Deep learning for mass detection in Full Field Digital Mammograms

dc.contributor.authorAgarwal, Richa
dc.contributor.authorDíaz, Oliver
dc.contributor.authorYap, Moi Hoon
dc.contributor.authorLlado, Xavier
dc.contributor.authorMarti, Robert
dc.date.accessioned2021-04-26T12:54:55Z
dc.date.available2021-04-26T12:54:55Z
dc.date.issued2020-06-01
dc.date.updated2021-04-26T12:54:55Z
dc.description.abstractIn recent years, the use of Convolutional Neural Networks (CNNs) in medical imaging has shown improved performance in terms of mass detection and classification compared to current state-of-the-art methods. This paper proposes a fully automated framework to detect masses in Full-Field Digital Mammograms (FFDM). This is based on the Faster Region-based Convolutional Neural Network (Faster-RCNN) model and is applied for detecting masses in the large-scale OPTIMAM Mammography Image Database (OMI-DB), which consists of  80,000 FFDMs mainly from Hologic and General Electric (GE) scanners. This research is the first to benchmark the performance of deep learning on OMI-DB. The proposed framework obtained a True Positive Rate (TPR) of 0.93 at 0.78 False Positive per Image (FPI) on FFDMs from the Hologic scanner. Transfer learning is then used in the Faster R-CNN model trained on Hologic images to detect masses in smaller databases containing FFDMs from the GE scanner and another public dataset INbreast (Siemens scanner). The detection framework obtained a TPR of 0.91±0.06 at 1.69 FPI for images from the GE scanner and also showed higher performance compared to state-of-the-art methods on the INbreast dataset, obtaining a TPR of 0.99±0.03 at 1.17 FPI for malignant and 0.85±0.08 at 1.0 FPI for benign masses, showing the potential to be used as part of an advanced CAD system for breast cancer screening.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec708326
dc.identifier.issn0010-4825
dc.identifier.urihttps://hdl.handle.net/2445/176697
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.compbiomed.2020.103774
dc.relation.ispartofComputers in Biology and Medicine, 2020, vol. 121
dc.relation.urihttps://doi.org/10.1016/j.compbiomed.2020.103774
dc.rightscc by-nc-nd (c) Agarwal, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationCàncer de mama
dc.subject.classificationMamografia
dc.subject.otherBreast cancer
dc.subject.otherMammography
dc.titleDeep learning for mass detection in Full Field Digital Mammograms
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
708326.pdf
Mida:
2.23 MB
Format:
Adobe Portable Document Format