Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Olivella, 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223186

Optimal partition of geometric complex networks

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

We introduce a method to find a low sparsity partition and an estimate h of the Cheeger constant of complex networks by exploiting the geometric properties that many networks exhibit. We generate synthetic networks from the S1/H2 model and obtain estimates for h that are between one and three orders of magnitude lower than the average sparsity over a large number of random partitions, ⟨s⟩, and decrease with network size. We then select seven real networks, infer an embedding into the hyperbolic disk and obtain estimates for h that are all lower than ⟨s⟩, but only three of them are at least one order of magnitude below. In conclusion, the geometric method provides better results than random in all cases and, if the network exhibits an underlying metric space, it provides estimates that are orders of magnitude lower than random and decrease with network size.

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Marián Boguñá Espinal

Citació

Citació

OLIVELLA FRANCOS, Oscar. Optimal partition of geometric complex networks. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/223186]

Exportar metadades

JSON - METS

Compartir registre