Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223186
Optimal partition of geometric complex networks
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We introduce a method to find a low sparsity partition and an estimate h of the Cheeger constant of complex networks by exploiting the geometric properties that many networks exhibit. We generate synthetic networks from the S1/H2 model and obtain estimates for h that are between one and three orders of magnitude lower than the average sparsity over a large number of random partitions, ⟨s⟩, and decrease with network size. We then select seven real networks, infer an embedding into the hyperbolic disk and obtain estimates for h that are all lower than ⟨s⟩, but only three of them are at least one order of magnitude below. In conclusion, the geometric method provides better results than random in all cases and, if the network exhibits an underlying metric
space, it provides estimates that are orders of magnitude lower than random and decrease with network size.
Descripció
Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Marián Boguñá Espinal
Matèries
Matèries (anglès)
Citació
Col·leccions
Citació
OLIVELLA FRANCOS, Oscar. Optimal partition of geometric complex networks. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/223186]