Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/106469

MultiDataSet: an R package for encapsulating multiple data sets with application to omic data integration

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

BACKGROUND: Reduction in the cost of genomic assays has generated large amounts of biomedical-related data. As a result, current studies perform multiple experiments in the same subjects. While Bioconductor's methods and classes implemented in different packages manage individual experiments, there is not a standard class to properly manage different omic datasets from the same subjects. In addition, most R/Bioconductor packages that have been designed to integrate and visualize biological data often use basic data structures with no clear general methods, such as subsetting or selecting samples. RESULTS: To cover this need, we have developed MultiDataSet, a new R class based on Bioconductor standards, designed to encapsulate multiple data sets. MultiDataSet deals with the usual difficulties of managing multiple and non-complete data sets while offering a simple and general way of subsetting features and selecting samples. We illustrate the use of MultiDataSet in three common situations: 1) performing integration analysis with third party packages; 2) creating new methods and functions for omic data integration; 3) encapsulating new unimplemented data from any biological experiment. CONCLUSIONS: MultiDataSet is a suitable class for data integration under R and Bioconductor framework.

Matèries (anglès)

Citació

Citació

HERNÁNDEZ FERRER, Carles, RUIZ ARENAS, Carlos, BELTRAN GOMILA, Alba, GONZÁLEZ, Juan ramón. MultiDataSet: an R package for encapsulating multiple data sets
                with application to omic data integration. _BMC Bioinformatics_. 2017. Vol. 18, núm. 36. [consulta: 10 de gener de 2026]. ISSN: 1471-2105. [Disponible a: https://hdl.handle.net/2445/106469]

Exportar metadades

JSON - METS

Compartir registre