El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 
Carregant...
Miniatura

Tipus de document

Tesi

Versió

Versió publicada

Data de publicació

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/120768

Theoretical study of excited states in molecules and molecular aggregates relevant for optoelectronic applications

Títol de la revista

ISSN de la revista

Títol del volum

Resum

[eng] In this thesis, different organic and organometallic molecules with interest for optoelectronic applications have been studied from a computational standpoint. The work presented in this thesis belongs to the molecular quantum chemistry field and in particular to the investigation of the low- lying electronic excited states involved in the target photophysical processes. Chapter 1 is devoted to the study of the absorption process of several organic dyes with potential application in dye-sensitized solar cells (DSSCs). In particular, the influence of the nature of the π- bridge in donor-acceptor dyes has been investigated. The photophysical properties of the dyes are rationalized based on geometrical characteristics and their electronic structure. The charge transfer nature of the optical state has also been investigated with several computational tools. Solvent effects on the absorption of the dye have also been considered and simulated to give an explanation to experimental observations. Chapter 2 deals with phosphorescent Ir(III) complexes that have interest as triplet emitters for organic light-emitting diodes (OLEDs). All the studies presented in this chapter have been done in collaboration with the experimental group of Prof. Inamur Rahman Laskar at the Birla Institute of Technology and Science (BITS) in Pilani, India, and his coworkers. After our first collaborations, we became interested in Ir(III) complexes exhibiting aggregation induced emission (AIE). This is a very interesting phenomenon where the emission intensity is enhanced in the solid state compared to dilute solution. Systems presenting the AIE are very attractive for a wide range of applications other than OLEDs. In this chapter, a section is devoted exclusively to analyze the evolution of this field and the principal mechanisms proposed to explain this phenomenon. It does not pretend to be a complete review from the literature, but rather a critical assessment with personal thoughts on the subject. As for the results, we were interested to understand how the photophysical properties are influenced by the presence of different ligands on the Ir(III) complexes and by the presence of intermolecular interactions. The absorption and emission of the studied complexes has been characterized and different approaches have been taken to give an explanation to experimental observations from our partners. In Chapter 3 a study on the photophysics of sulfur bridged naphthalene dimers is presented. This work was partially done during a research stay in the group of Prof. Mario Barbatti at the Institut de Chimie Radicalaire in Marseille (France). Herein we were interested in explaining the dependence of the photoluminescence of the aforementioned dimers on the oxidation state of the sulfur atom at the bridge. Experimental work on these compounds and related ones had been previously reported. An explanation for the different luminescence however was not given for the naphthalene dimers. In this chaper we have tackled this problem by characterizing the excited states and crossings between the ground and first excited state PESs.

Descripció

Citació

Citació

CLIMENT BIESCAS, Claudia. Theoretical study of excited states in molecules and molecular aggregates relevant for optoelectronic applications. [consulta: 30 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/120768]

Exportar metadades

JSON - METS

Compartir registre