Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/143342

Hyperelliptic Jacobians and isogenies

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this note we mainly consider abelian varieties isogenous to hyperelliptic Jacobians. In the first part we prove that a very general hyperelliptic Jacobian of genus is not isogenous to a non-hyperelliptic Jacobian. As a consequence we obtain that the intermediate Jacobian of a very general cubic threefold is not isogenous to a Jacobian. Another corollary tells that the Jacobian of a very general d-gonal curve of genus is not isogenous to a different Jacobian. In the second part we consider a closed subvariety of the moduli space of principally polarized varieties of dimension . We show that if a very general element of is dominated by the Jacobian of a curve C and , then C is not hyperelliptic. In particular, if the general element in is simple, its Kummer variety does not contain rational curves. Finally we show that a closed subvariety of dimension such that the Jacobian of a very general element of is dominated by a hyperelliptic Jacobian is contained either in the hyperelliptic or in the trigonal locus.

Matèries (anglès)

Citació

Citació

NARANJO DEL VAL, Juan carlos, PIROLA, Gian pietro. Hyperelliptic Jacobians and isogenies. _Advances in Mathematics_. 2018. Vol. 335, núm. 896-909. [consulta: 15 de gener de 2026]. ISSN: 0001-8708. [Disponible a: https://hdl.handle.net/2445/143342]

Exportar metadades

JSON - METS

Compartir registre