Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Dong, Xuesi et al., 2019
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/155347

Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Limited studies have focused on developing prognostic models with trans-omics biomarkers for early-stage lung adenocarcinoma (LUAD). We performed integrative analysis of clinical information, DNA methylation, and gene expression data using 825 early-stage LUAD patients from 5 cohorts. Ranger algorithm was used to screen prognosis-associated biomarkers, which were confirmed with a validation phase. Clinical and biomarker information was fused using an iCluster plus algorithm, which significantly distinguished patients into high- and low-mortality risk groups (Pdiscovery = 0.01 and Pvalidation = 2.71×10-3). Further, potential functional DNA methylation-gene expression-overall survival pathways were evaluated by causal mediation analysis. The effect of DNA methylation level on LUAD survival was significantly mediated through gene expression level. By adding DNA methylation and gene expression biomarkers to a model of only clinical data, the AUCs of the trans-omics model improved by 18.3% (to 87.2%) and 16.4% (to 85.3%) in discovery and validation phases, respectively. Further, concordance index of the nomogram was 0.81 and 0.77 in discovery and validation phases, respectively. Based on systematic review of published literatures, our model was superior to all existing models for early-stage LUAD. In summary, our trans-omics model may help physicians accurately identify patients with high mortality risk.

Citació

Citació

DONG, Xuesi, ZHANG, Ruyang, HE, Jieyu, LAI, Linjing, ALOLGA, Raphael n., SHEN, Sipeng, ZHU, Ying, YOU, Dongfang, LIN, Lijuan, CHEN, Chao, ZHAO, Yang, DUAN, Weiwei, SU, Li, SHAFER, Andrea, SALAMA, Moran, FLEISCHER, Thomas, BJAANÆS, Maria moksnes, KARLSSON, Anna, PLANCK, Maria, WANG, Rui, STAAF, Johan, HELLAND, Åslaug, ESTELLER, Manel, WEI, Yongyue, CHEN, Feng, CHRISTIANI, David c.. Trans-omics biomarker model improves prognostic prediction accuracy for early-stage lung adenocarcinoma. _Aging_. 2019. Vol. 11, núm. 16, pàgs. 6312-6335. [consulta: 20 de gener de 2026]. ISSN: 1945-4589. [Disponible a: https://hdl.handle.net/2445/155347]

Exportar metadades

JSON - METS

Compartir registre