Chimera-like states in modular neural networks

dc.contributor.authorHizanidis, Johanne
dc.contributor.authorKouvaris, Nikos E.
dc.contributor.authorZamora López, Gorka
dc.contributor.authorDíaz Guilera, Albert
dc.contributor.authorAntonopoulos, Chris G.
dc.date.accessioned2017-04-27T11:11:18Z
dc.date.available2017-04-27T11:11:18Z
dc.date.issued2016-01-22
dc.date.updated2017-04-27T11:11:18Z
dc.description.abstractChimera states, namely the coexistence of coherent and incoherent behavior, were previously analyzed in complex networks. However, they have not been extensively studied in modular networks. Here, we consider a neural network inspired by the connectome of the C. elegans soil worm, organized into six interconnected communities, where neurons obey chaotic bursting dynamics. Neurons are assumed to be connected with electrical synapses within their communities and with chemical synapses across them. As our numerical simulations reveal, the coaction of these two types of coupling can shape the dynamics in such a way that chimera-like states can happen. They consist of a fraction of synchronized neurons which belong to the larger communities, and a fraction of desynchronized neurons which are part of smaller communities. In addition to the Kuramoto order parameter ρ, we also employ other measures of coherence, such as the chimera-like χ and metastability λ indices, which quantify the degree of synchronization among communities and along time, respectively. We perform the same analysis for networks that share common features with the C. elegans neural network. Similar results suggest that under certain assumptions, chimera-like states are prominent phenomena in modular networks, and might provide insight for the behavior of more complex modular networks.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec656786
dc.identifier.issn2045-2322
dc.identifier.pmid26796971
dc.identifier.urihttps://hdl.handle.net/2445/110189
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/srep19845
dc.relation.ispartofScientific Reports, 2016, vol. 6, p. 19845
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/318132/EU//LASAGNE
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/331800/EU//INTERACTIONS
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/316165/EU//CCQCN
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/317532/EU//MULTIPLEX
dc.relation.urihttps://doi.org/10.1038/srep19845
dc.rightscc-by (c) Hizanidis, Johanne et al., 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationConducta (Psicologia)
dc.subject.classificationNeurociències
dc.subject.classificationSimulació per ordinador
dc.subject.classificationSistema nerviós
dc.subject.otherNeural networks (Computer science)
dc.subject.otherHuman behavior
dc.subject.otherNeurosciences
dc.subject.otherComputer simulation
dc.subject.otherNervous system
dc.titleChimera-like states in modular neural networks
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
656786.pdf
Mida:
1.28 MB
Format:
Adobe Portable Document Format