Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215282
Open data based electricity load forecasting
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Resum
[en] Electricity is one of the main engines of modern societies. The agents that are involved in the electricity system of a country need to have the best forecasts possible of electricity load in order to ensure that it is correctly supplied, and also to define their action strategies in the market. In this thesis we will focus on the electricity
load forecasting for the daily market of the so called Mercado Ibérico de Electricidad (MIBEL), where most of the energy available is auctioned. We studied the State-of-the-Art of the electricity demand approaches, specially for short-term predictions, since we are making one day-ahead estimations. We extracted data from open sources that were later used for designing and testing different types of models. Based on the performance of the different approaches, we selected a model that efficiently combines both time series forecasting and machine learning, obtaining a precision close to the one provided by the system operator, Red Eléctrica. Finally, we analyzed the relevance of each of the variables involved by using the Shapley values and regularization techniques.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Oriol Pujol Vila
Matèries (anglès)
Citació
Citació
ÍÑIGUEZ GÓMEZ, David. Open data based electricity load forecasting. [consulta: 6 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/215282]