Degree of irrationality of a very general Abelian variety
| dc.contributor.author | Colombo. Elisabetta | |
| dc.contributor.author | Matin, Olivier | |
| dc.contributor.author | Naranjo del Val, Juan Carlos | |
| dc.contributor.author | Pirola, Gian Pietro | |
| dc.date.accessioned | 2023-05-02T08:57:49Z | |
| dc.date.available | 2023-06-01T05:10:35Z | |
| dc.date.issued | 2022-06-01 | |
| dc.date.updated | 2023-05-02T08:57:50Z | |
| dc.description.abstract | Consider a very general abelian variety $A$ of dimension at least 3 and an integer $0<d \leq \operatorname{dim} A$. We show that if the map $A^k \rightarrow \mathrm{CH}_0(A)$ has a $d$-dimensional fiber then $k \geq d+(\operatorname{dim} A+1) / 2$. This extends results of the second-named author which covered the cases $d=1,2$. As a geometric application, we prove that any dominant rational map from a very general abelian $g$-fold to $\mathbb{P}^g$ has degree at least $(3 g+1) / 2$ for $g \geq 3$, thus improving results of Alzati and the last-named author in the case of a very general abelian variety. | |
| dc.format.extent | 19 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 703126 | |
| dc.identifier.issn | 1073-7928 | |
| dc.identifier.uri | https://hdl.handle.net/2445/197428 | |
| dc.language.iso | eng | |
| dc.publisher | Oxford University Press | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1093/imrn/rnaa358 | |
| dc.relation.ispartof | International Mathematics Research Notices, 2022, vol. 2022, num. 11, p. 8295-8313 | |
| dc.relation.uri | https://doi.org/10.1093/imrn/rnaa358 | |
| dc.rights | (c) Colombo. Elisabetta et al., 2022 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Varietats abelianes | |
| dc.subject.classification | Geometria algebraica | |
| dc.subject.classification | Geometria biracional | |
| dc.subject.other | Abelian varieties | |
| dc.subject.other | Algebraic geometry | |
| dc.subject.other | Birational geometry | |
| dc.title | Degree of irrationality of a very general Abelian variety | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1