Degree of irrationality of a very general Abelian variety

dc.contributor.authorColombo. Elisabetta
dc.contributor.authorMatin, Olivier
dc.contributor.authorNaranjo del Val, Juan Carlos
dc.contributor.authorPirola, Gian Pietro
dc.date.accessioned2023-05-02T08:57:49Z
dc.date.available2023-06-01T05:10:35Z
dc.date.issued2022-06-01
dc.date.updated2023-05-02T08:57:50Z
dc.description.abstractConsider a very general abelian variety $A$ of dimension at least 3 and an integer $0<d \leq \operatorname{dim} A$. We show that if the map $A^k \rightarrow \mathrm{CH}_0(A)$ has a $d$-dimensional fiber then $k \geq d+(\operatorname{dim} A+1) / 2$. This extends results of the second-named author which covered the cases $d=1,2$. As a geometric application, we prove that any dominant rational map from a very general abelian $g$-fold to $\mathbb{P}^g$ has degree at least $(3 g+1) / 2$ for $g \geq 3$, thus improving results of Alzati and the last-named author in the case of a very general abelian variety.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec703126
dc.identifier.issn1073-7928
dc.identifier.urihttps://hdl.handle.net/2445/197428
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1093/imrn/rnaa358
dc.relation.ispartofInternational Mathematics Research Notices, 2022, vol. 2022, num. 11, p. 8295-8313
dc.relation.urihttps://doi.org/10.1093/imrn/rnaa358
dc.rights(c) Colombo. Elisabetta et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationVarietats abelianes
dc.subject.classificationGeometria algebraica
dc.subject.classificationGeometria biracional
dc.subject.otherAbelian varieties
dc.subject.otherAlgebraic geometry
dc.subject.otherBirational geometry
dc.titleDegree of irrationality of a very general Abelian variety
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
703126.pdf
Mida:
167.45 KB
Format:
Adobe Portable Document Format