Contractive inequalities for Hardy spaces
| dc.contributor.author | Brevig, Ole Fredrik | |
| dc.contributor.author | Ortega Cerdà, Joaquim | |
| dc.contributor.author | Seip, Kristian | |
| dc.contributor.author | Zhao Jing | |
| dc.date.accessioned | 2023-04-21T09:06:13Z | |
| dc.date.available | 2023-04-21T09:06:13Z | |
| dc.date.issued | 2018-09 | |
| dc.date.updated | 2023-04-21T09:06:13Z | |
| dc.description.abstract | We state and discuss several interrelated results, conjectures, and questions regarding contractive inequalities for classical $H^p$ spaces of the unit disc. We study both coefficient estimates in terms of weighted $\ell^2$ sums and the Riesz projection viewed as a map from $L^q$ to $H^p$ with $q \geq p$. Some numerical evidence is given that supports our conjectures. | |
| dc.format.extent | 16 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 680577 | |
| dc.identifier.issn | 0208-6573 | |
| dc.identifier.uri | https://hdl.handle.net/2445/197005 | |
| dc.language.iso | eng | |
| dc.publisher | Adam Mickiewicz University | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.7169/facm/1680 | |
| dc.relation.ispartof | Functiones et Approximatio, Commentarii Mathematici, 2018, vol. 59, num. 1, p. 41-56 | |
| dc.relation.uri | https://doi.org/10.7169/facm/1680 | |
| dc.rights | (c) Adam Mickiewicz University, 2018 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Espais de Hardy | |
| dc.subject.classification | Anàlisi harmònica | |
| dc.subject.classification | Desigualtats (Matemàtica) | |
| dc.subject.other | Hardy spaces | |
| dc.subject.other | Harmonic analysis | |
| dc.subject.other | Inequalities (Mathematics) | |
| dc.title | Contractive inequalities for Hardy spaces | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1