Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215519
Possible worlds and the contingency of logic
Títol de la revista
Autors
ISSN de la revista
Títol del volum
Resum
In modal semantics, when speaking of possible worlds, there seems to be the tacit assumption
that logical reasoning will stay constant throughout. That is to say that a logical reasoning valid at
one world is valid in all worlds, hence necessary. But what happens then if we decide to consider
possible worlds semantics where different worlds may respond to different logics? What then becomes
necessary?
In this thesis, we expand the possible world semantics for modal logics by not assuming one ‘type’
of possible worlds in a model, but by considering that different possible worlds might reason under
different logics. We focus ourselves on a setting where we combine classical and intuitionistic worlds.
We use ⊢, to denote pure propositional intuitionistic reasoning even if the language contains □.
In that sense, formulas of the form □ A behave as propositional variables as far as ⊢, is concerned.
Likewise we consider the ⊢ relation for classical reasoning. We define so-called mixed models which
are tuples ⟨W, R, {lw}w∈W , {Tw}w∈W ⟩, where lw ∈ {i, c} and Tw a set of modal formulas such that
1. ⊥ ∈/ Tw
2. Tw ⊢lw φ ⇒ φ ∈ Tw
3. □φ ∈ Tw ⇐⇒ ∀v(wRv ⇒ Tv ⊢lv φ)
4. ¬□φ ∈ Tw ⇐⇒ ∃u(wRu ∧ Tu ⊢lu ¬φ)
We prove soundness of the intuitionistic normal modal logic iK+ (bem) wrt mixed models, where
bem is short for ‘Box Excluded Middle’ and denotes the axiom
□A ∨ ¬□A.
The logic iK has well-studied birelational semantics with an R relation for the □ and ≤ for intuitionistic implication (Bozic and Dosen 1984). We prove soundness and completeness for iK + (bem) with respect to these birelational semantics together with the birelational model frame condition.
w ≤ v ⇒ ∀z(wRz ⇒ vRz).
We conclude completeness for iK + (bem) wrt mixed models.
These results pave the way for new semantic constructions of Kripke models, raising intriguing
mathematical and philosophical questions. It invites us to consider the implementation of more
logics, possibly non-comparable, in this construction.
Descripció
Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2023-2024. Tutor: Joost J. Joosten i Iris van der Giessen
Matèries (anglès)
Citació
Citació
MAYAUX, Paul. Possible worlds and the contingency of logic. [consulta: 29 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/215519]