El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Mayaux, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215519

Possible worlds and the contingency of logic

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In modal semantics, when speaking of possible worlds, there seems to be the tacit assumption that logical reasoning will stay constant throughout. That is to say that a logical reasoning valid at one world is valid in all worlds, hence necessary. But what happens then if we decide to consider possible worlds semantics where different worlds may respond to different logics? What then becomes necessary? In this thesis, we expand the possible world semantics for modal logics by not assuming one ‘type’ of possible worlds in a model, but by considering that different possible worlds might reason under different logics. We focus ourselves on a setting where we combine classical and intuitionistic worlds. We use ⊢, to denote pure propositional intuitionistic reasoning even if the language contains □. In that sense, formulas of the form □ A behave as propositional variables as far as ⊢, is concerned. Likewise we consider the ⊢ relation for classical reasoning. We define so-called mixed models which are tuples ⟨W, R, {lw}w∈W , {Tw}w∈W ⟩, where lw ∈ {i, c} and Tw a set of modal formulas such that 1. ⊥ ∈/ Tw 2. Tw ⊢lw φ ⇒ φ ∈ Tw 3. □φ ∈ Tw ⇐⇒ ∀v(wRv ⇒ Tv ⊢lv φ) 4. ¬□φ ∈ Tw ⇐⇒ ∃u(wRu ∧ Tu ⊢lu ¬φ) We prove soundness of the intuitionistic normal modal logic iK+ (bem) wrt mixed models, where bem is short for ‘Box Excluded Middle’ and denotes the axiom □A ∨ ¬□A. The logic iK has well-studied birelational semantics with an R relation for the □ and ≤ for intuitionistic implication (Bozic and Dosen 1984). We prove soundness and completeness for iK + (bem) with respect to these birelational semantics together with the birelational model frame condition. w ≤ v ⇒ ∀z(wRz ⇒ vRz). We conclude completeness for iK + (bem) wrt mixed models. These results pave the way for new semantic constructions of Kripke models, raising intriguing mathematical and philosophical questions. It invites us to consider the implementation of more logics, possibly non-comparable, in this construction.

Descripció

Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2023-2024. Tutor: Joost J. Joosten i Iris van der Giessen

Citació

Citació

MAYAUX, Paul. Possible worlds and the contingency of logic. [consulta: 5 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/215519]

Exportar metadades

JSON - METS

Compartir registre