Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Rodríguez, Itsaso et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193826

dbcsp: User-friendly R package for Distance-Based Common Spacial Patterns

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Common Spatial Patterns (CSP) is a widely used method to analyse electroencephalography (EEG) data, concerning the supervised classification of the activity of brain. More generally, it can be useful to distinguish between multivariate signals recorded during a time span for two different classes. CSP is based on the simultaneous diagonalization of the average covariance matrices of signals from both classes and it allows the data to be projected into a low-dimensional subspace. Once the data are represented in a low-dimensional subspace, a classification step must be carried out. The original CSP method is based on the Euclidean distance between signals, and here we extend it so that it can be applied on any appropriate distance for data at hand. Both the classical CSP and the new Distance-Based CSP (DB-CSP) are implemented in an R package, called dbcsp.

Citació

Citació

RODRÍGUEZ, Itsaso, IRIGOIEN, Itziar, SIERRA, Basilio, ARENAS SOLÀ, Concepción. dbcsp: User-friendly R package for Distance-Based Common Spacial Patterns. _The R Journal_. 2022. Vol. 14, núm. 3, pàgs. 80-94. [consulta: 30 de gener de 2026]. ISSN: 2073-4859. [Disponible a: https://hdl.handle.net/2445/193826]

Exportar metadades

JSON - METS

Compartir registre