Light- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer

dc.contributor.authorZamora, Ricardo A.
dc.contributor.authorLópez Ortiz, Manuel
dc.contributor.authorSales Mateo, Montserrat
dc.contributor.authorHu, Chen
dc.contributor.authorCroce, Roberta
dc.contributor.authorAbraham
dc.contributor.authorManiyara, Rinu Abraham
dc.contributor.authorRinu
dc.contributor.authorPruneri, Valerio
dc.contributor.authorGiannotti, Marina Inés
dc.contributor.authorGorostiza, Pau
dc.date.accessioned2026-01-08T10:26:21Z
dc.date.available2026-01-08T10:26:21Z
dc.date.issued2022-09-06
dc.date.updated2026-01-08T10:26:22Z
dc.description.abstractCharge exchange is the fundamental process that sustains cellular respiration and photosynthesis by shuttling electrons in a cascade of electron transfer (ET) steps between redox cofactors. While intraprotein charge exchange is well characterized in protein complexes bearing multiple redox sites, interprotein processes are less understood due to the lack of suitable experimental approaches and the dynamic nature of the interactions. Proteins constrained between electrodes are known to support electron transport (ETp) through the protein matrix even without redox cofactors, as the charges housed by redox sites in ET are furnished by the electrodes. However, it is unknown whether protein ETp mechanisms apply to the interprotein medium present in physiological conditions. We study interprotein charge exchange between plant photosystem I (PSI) and its soluble redox partner plastocyanin (Pc) and address the role of the Pc copper center. Using electrochemical scanning tunnelling spectroscopy (ECSTS) current-distance and blinking measurements, we respectively quantify the spatial span of charge exchange between individual Pc/PSI pairs and ETp through transient Pc/PSI complexes. Pc devoid of the redox center (Pcapo) can exchange charge with PSI at longer distances than with the copper ion (Pcholo). Conductance bursts associated to Pcapo/PSI complex formation are higher than in Pcholo/PSI. Thus, copper ions are not required for long distance Pc/PSI ETp but regulate its spatial span and conductance. Our results suggest that the redox center that carries the charge in Pc is not necessary to exchange it in interprotein ET through the aqueous solution, and question the canonical view of tight complex binding between redox protein partners.
dc.format.extent20 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec751249
dc.identifier.issn1936-0851
dc.identifier.urihttps://hdl.handle.net/2445/225160
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acsnano.2c06454
dc.relation.ispartofACS Nano, 2022, p. 1-20
dc.relation.urihttps://doi.org/10.1021/acsnano.2c06454
dc.rights(c) American Chemical Society, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subject.classificationFotosíntesi
dc.subject.classificationReacció d'oxidació-reducció
dc.subject.classificationTransferència de càrrega
dc.subject.otherPhotosynthesis
dc.subject.otherOxidation-reduction reaction
dc.subject.otherCharge transfer
dc.titleLight- and Redox-Dependent Force Spectroscopy Reveals that the Interaction between Plastocyanin and Plant Photosystem I Is Favored when One Partner Is Ready for Electron Transfer
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
869008.pdf
Mida:
837.55 KB
Format:
Adobe Portable Document Format