Numerical computation of high-order expansions of invariant manifolds of high-dimensional tori

dc.contributor.authorGimeno, Joan
dc.contributor.authorJorba i Monte, Àngel
dc.contributor.authorNicolás, Begoña
dc.contributor.authorOlmedo, Estrella
dc.date.accessioned2023-03-02T11:05:38Z
dc.date.available2023-03-02T11:05:38Z
dc.date.issued2022-09
dc.date.updated2023-03-02T11:05:38Z
dc.description.abstractIn this paper we present a procedure to compute reducible invariant tori and their stable and unstable manifolds in Poincaré maps. The method has two steps. In the first step we compute, by means of a quadratically convergent scheme, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. If the torus has stable and/or unstable directions, in the second step we compute the Taylor--Fourier expansions of the corresponding invariant manifolds up to a given order. The paper also discusses the case in which the torus is highly unstable so that a multiple shooting strategy is needed to compute the torus. If the order of the Taylor expansion of the manifolds is fixed and $N$ is the number of Fourier modes, the whole computational effort (torus and manifolds) increases as $\mathcal{O}(N \log N)$ and the memory required behaves as $\mathcal{O}(N)$. This makes the algorithm very suitable to compute highdimensional tori for which a huge number of Fourier modes are needed. Besides, the algorithm has a very high degree of parallelism. The paper includes examples where we compute invariant tori (of dimensions up to 5) of quasiperiodically forced ODEs. The computations are run in a parallel computer, and the method's efficiency with respect to the number of processors is also discussed.
dc.format.extent30 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec731059
dc.identifier.issn1536-0040
dc.identifier.urihttps://hdl.handle.net/2445/194435
dc.language.isoeng
dc.publisherSociety for Industrial and Applied Mathematics.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1137/21M1458363
dc.relation.ispartofSIAM Journal On Applied Dynamical Systems, 2022, vol. 21, num. 3, p. 1832-1861
dc.relation.urihttps://doi.org/10.1137/21M1458363
dc.rights(c) Society for Industrial and Applied Mathematics., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.classificationAnàlisi numèrica
dc.subject.classificationProcessament en paral·lel (Ordinadors)
dc.subject.otherDifferentiable dynamical systems
dc.subject.otherNumerical analysis
dc.subject.otherParallel processing (Electronic computers)
dc.titleNumerical computation of high-order expansions of invariant manifolds of high-dimensional tori
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
731059.pdf
Mida:
416.25 KB
Format:
Adobe Portable Document Format