El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 
Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Cristancho S., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/201919

Unification in intuitionistic logic

Títol de la revista

ISSN de la revista

Títol del volum

Resum

The concept of unification has been widely studied from a logical perspective. In the context of logic, a formula A is said to be unifiable in a logic ⊢ if there is a substitution σ that turns A into a theorem of ⊢. In this case, we say that σ is a unifier (in ⊢) of A, or that A is unifiable (in ⊢) by σ. Given a logic ⊢ and a unifiable formula A (in ⊢), there is a natural way to compare its unifiers in terms of generality using the fact that, up to logical equivalence, some unifiers can be ‘obtained’ from others. More precisely, we say that the unifier σ1 of A is less general than the unifier σ2 of A if there is a substitution τ such that σ1(x) is logically equivalent to τ(σ2(x)) in ⊢ for all propositional variables x in the domain of σ1 and σ2. This gives rise to a hierarchy among the set of unifiers of A, where the unifiers in lower levels can be obtained from the unifiers in upper levels. A basis of unifiers of a unifiable formula A is a set of incomparable elements that ‘generates’ any other unifier of A. The study of the hierarchy among unifiers rises some interesting questions: Given a unifiable formula A in ⊢, is there a basis of unifiers of A? If so, is it finite or infinite? If it is finite, does it have one or more elements? These questions can be stated not only for formulas, but for logics in general.

Descripció

Treballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2022-2023. Tutor: Tommaso Moraschini i Amanda Vidal Wandelmer

Citació

Citació

CRISTANCHO S., Sebastián r.. Unification in intuitionistic logic. [consulta: 29 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/201919]

Exportar metadades

JSON - METS

Compartir registre