El Dipòsit Digital ha actualitzat el programari. Qualsevol incidència que trobeu si us plau contacteu amb dipositdigital@ub.edu.

 

Automated quality control of small animal MR neuroimaging data

dc.contributor.authorKalantari, Aref
dc.contributor.authorShahbazi, Mehrab
dc.contributor.authorSchneider, Marc
dc.contributor.authorRaikes, Adam C.
dc.contributor.authorFrazão, Victor Vera
dc.contributor.authorBhattrai, Avnish
dc.contributor.authorCarnevale, Lorenzo
dc.contributor.authorDiao, Yujian
dc.contributor.authorFranx, Bart A. A.
dc.contributor.authorGammaraccio, Francesco
dc.contributor.authorGoncalves, Lisa Marie
dc.contributor.authorLee, Susan
dc.contributor.authorLeeuwen, Esther M. van
dc.contributor.authorMichalek, Annika
dc.contributor.authorMueller, Susanne
dc.contributor.authorRivera Olvera, Alejandro
dc.contributor.authorPadro, Daniel
dc.contributor.authorKotb Selim, Mohamed
dc.contributor.authorToorn, Annette van der
dc.contributor.authorVarriano, Federico
dc.contributor.authorVrooman, Roël
dc.contributor.authorWenk, Patricia
dc.contributor.authorAlbers, H. Elliott
dc.contributor.authorBoehm Sturm, Philipp
dc.contributor.authorBudinger, Eike
dc.contributor.authorCanals, Santiago
dc.contributor.authorSantis, Silvia de
dc.contributor.authorDiaz Brinton, Roberta
dc.contributor.authorDijkhuizen, Rick M.
dc.contributor.authorEixarch Roca, Elisenda
dc.contributor.authorForloni, Gianluigi
dc.contributor.authorGrandjean, Joanes
dc.contributor.authorHekmatyar, Khan
dc.contributor.authorJacobs, Russell E.
dc.contributor.authorJelescu, Ileana
dc.contributor.authorKurniawan, Nyoman D.
dc.contributor.authorLembo, Giuseppe
dc.contributor.authorLongo, Dario Livio
dc.contributor.authorSta Maria, Naomi S.
dc.contributor.authorMicotti, Edoardo
dc.contributor.authorMuñoz Moreno, Emma
dc.contributor.authorRamos Cabrer, Pedro
dc.contributor.authorReichardt, Wilfried
dc.contributor.authorSoria, Guadalupe
dc.contributor.authorIelacqua, Giovanna D.
dc.contributor.authorAswendt, Markus
dc.date.accessioned2025-09-19T12:56:36Z
dc.date.available2025-09-19T12:56:36Z
dc.date.issued2024-09-27
dc.date.updated2025-09-19T12:56:36Z
dc.description.abstractMagnetic resonance imaging (MRI) is a valuable tool for studying brain structure and function in animal and clinical studies. With the growth of public MRI repositories, access to data has finally become easier. However, filtering large datasets for potential poor-quality outliers can be a challenge. We present AIDAqc, a machine-learning-assisted automated Python-based command-line tool for small animal MRI quality assessment. Quality control features include signal-to-noise ratio (SNR), temporal SNR, and motion. All features are automatically calculated and no regions of interest are needed. Automated outlier detection for a given dataset combines the interquartile range and the machine-learning methods one-class support vector machine, isolation forest, local outlier factor, and elliptic envelope. To evaluate the reliability of individual quality control metrics, a simulation of noise (Gaussian, salt and pepper, speckle) and motion was performed. In outlier detection, single scans with induced artifacts were successfully identified by AIDAqc. AIDAqc was challenged in a large heterogeneous dataset collected from 19 international laboratories, including data from mice, rats, rabbits, hamsters, and gerbils, obtained with different hardware and at different field strengths. The results show that the manual inter-rater agreement (mean Fleiss Kappa score 0.17) is low when identifying poor-quality data. A direct comparison of AIDAqc results, therefore, showed only low-to-moderate concordance. In a manual post hoc validation of AIDAqc output, precision was high (>70%). The outlier data can have a significant impact on further postprocessing, as shown in representative functional and structural connectivity analysis. In summary, this pipeline optimized for small animal MRI provides researchers with a valuable tool to efficiently and effectively assess the quality of their MRI data, which is essential for improved reliability and reproducibility.
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec758497
dc.identifier.pmid40212822
dc.identifier.urihttps://hdl.handle.net/2445/223295
dc.language.isoeng
dc.publisherThe MIT Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1162/imag_a_00317
dc.relation.ispartofImaging Neuroscience, 2024, vol. 2
dc.relation.urihttps://doi.org/10.1162/imag_a_00317
dc.rightscc-by (c) Kalantari, A. et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Cirurgia i Especialitats Medicoquirúrgiques)
dc.subject.classificationImatges per ressonància magnètica
dc.subject.classificationNeuroanatomia
dc.subject.classificationMapatge del cervell
dc.subject.otherMagnetic resonance imaging
dc.subject.otherNeuroanatomy
dc.subject.otherBrain mapping
dc.titleAutomated quality control of small animal MR neuroimaging data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
893777.pdf
Mida:
7.93 MB
Format:
Adobe Portable Document Format