Deep ensemble-based hard sample mining for food recognition

dc.contributor.authorNagarajan, Bhalaji
dc.contributor.authorBolaños Solà, Marc
dc.contributor.authorAguilar Torres, Eduardo
dc.contributor.authorRadeva, Petia
dc.date.accessioned2025-02-20T07:45:32Z
dc.date.available2025-02-20T07:45:32Z
dc.date.issued2023-09
dc.date.updated2025-02-20T07:45:32Z
dc.description.abstractDeep neural networks represent a compelling technique to tackle complex real-world problems, but are over-parameterized and often suffer from over- or under-confident estimates. Deep ensembles have shown better parameter estimations and often provide reliable uncertainty estimates that contribute to the robustness of the results. In this work, we propose a new metric to identify samples that are hard to classify. Our metric is defined as coincidence score for deep ensembles which measures the agreement of its individual models. The main hypothesis we rely on is that deep learning algorithms learn the low-loss samples better compared to large-loss samples. In order to compensate for this, we use controlled over-sampling on the identified ”hard” samples using proper data augmentation schemes to enable the models to learn those samples better. We validate the proposed metric using two public food datasets on different backbone architectures and show the improvements compared to the conventional deep neural network training using different performance metrics.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec746151
dc.identifier.issn1047-3203
dc.identifier.urihttps://hdl.handle.net/2445/219021
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.jvcir.2023.103905
dc.relation.ispartofJournal of Visual Communication and Image Representation, 2023, vol. 95
dc.relation.urihttps://doi.org/10.1016/j.jvcir.2023.103905
dc.rightscc-by (c) Bhalaji Nagarajan, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationReconeixement de formes (Informàtica)
dc.subject.classificationVisió per ordinador
dc.subject.otherMachine learning
dc.subject.otherPattern recognition systems
dc.subject.otherComputer vision
dc.titleDeep ensemble-based hard sample mining for food recognition
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
853422.pdf
Mida:
3.84 MB
Format:
Adobe Portable Document Format