Sharp quantitative stability for isoperimetric inequalities with homogeneous weights

dc.contributor.authorCinti, Eleonora
dc.contributor.authorGlaudo, Federico
dc.contributor.authorPratelli, Aldo
dc.contributor.authorRos, Xavier
dc.contributor.authorSerra, Joaquim
dc.date.accessioned2023-02-24T09:22:15Z
dc.date.available2023-02-24T09:22:15Z
dc.date.issued2022-01-12
dc.date.updated2023-02-24T09:22:15Z
dc.description.abstractWe prove the sharp quantitative stability for a wide class of weighted isoperimetric inequalities. More precisely, we consider isoperimetric inequalities in convex cones with homogeneous weights. Inspired by the proof of such isoperimetric inequalities through the ABP method (see [CRS16]), we construct a new convex coupling (i.e., a map that is the gradient of a convex function) between a generic set $E$ and the minimizer of the inequality (as in Gromov's proof of the isoperimetric inequality). Even if this map does not come from optimal transport, and even if there is a weight in the inequality, we adapt the methods of [FMP10] and prove that if $E$ is almost optimal for the inequality then it is quantitatively close to a minimizer up to translations. Then, a delicate analysis is necessary to rule out the possibility of translations. As a step of our proof, we establish a sharp regularity result for restricted convex envelopes of a function that might be of independent interest.
dc.format.extent47 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec719151
dc.identifier.issn0002-9947
dc.identifier.urihttps://hdl.handle.net/2445/194107
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1090/tran/8525
dc.relation.ispartofTransactions of the American Mathematical Society, 2022, vol. 375, p. 1509-1555
dc.relation.urihttps://doi.org/10.1090/tran/8525
dc.rightscc-by-nc-nd (c) American Mathematical Society (AMS), 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationVarietats (Matemàtica)
dc.subject.classificationOptimització matemàtica
dc.subject.classificationTeoria de la mesura geomètrica
dc.subject.otherManifolds (Mathematics)
dc.subject.otherMathematical optimization
dc.subject.otherGeometric measure theory
dc.titleSharp quantitative stability for isoperimetric inequalities with homogeneous weights
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
719151.pdf
Mida:
534.8 KB
Format:
Adobe Portable Document Format