Rational design of an air-breathing gas-diffusion electrode with oxygen vacancy-rich ZnO for robust and durable H<sub>2</sub>O<sub>2</sub> electrosynthesis

dc.contributor.authorSun, Y.
dc.contributor.authorXia, P.
dc.contributor.authorSheng, P.
dc.contributor.authorWang, Chao
dc.contributor.authorYou, J.
dc.contributor.authorDeng, Q.
dc.contributor.authorHe, Quiang
dc.contributor.authorSirés Sadornil, Ignacio
dc.contributor.authorYe, Z.
dc.date.accessioned2024-11-20T00:13:37Z
dc.date.embargoEndDateinfo:eu-repo/date/embargoEnd/2026-11-07
dc.date.issued2024-11-08
dc.date.updated2024-11-20T00:13:37Z
dc.description.abstractDeveloping cost-effective and durable cathodes with outstanding oxygen mass transport and selective two-electron oxygen reduction reaction (ORR) is crucial for large-scale H2O2 electrosynthesis. Herein, an oxygen vacancy-rich ZnO-modified air-breathing gas-diffusion electrode (ZnO-V/GDE) was fabricated, thus eliminating the cost of aeration while achieving remarkable O2 utilization efficiency and H2O2 selectivity. This novel cathode led to ultrahigh H2O2 yield of 1005.2 mg L−1 with selectivity of 74.6 %, outperforming both the raw and ZnO-modified air-breathing GDEs. Moreover, the practical applicability of ZnO-V/GDE was demonstrated by its high stability and effectiveness when treating micropollutants in wastewater by ZnO-V/GDE-based electro-Fenton process. Mechanistic insights unveiled the key roles of oxygen vacancies, which not only facilitate the O2 transport by creating a superhydrophobic interface and provide binding centers to O2, but also reduce the energy barrier of the rate-determining step (OOH*-to-H2O2), eventually enhancing the ORR performance.
dc.embargo.lift2026-11-07
dc.format.extent1 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec751805
dc.identifier.issn1385-8947
dc.identifier.urihttps://hdl.handle.net/2445/216632
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.cej.2024.157563
dc.relation.ispartofChemical Engineering Journal, 2024, vol. 500, p. 157563
dc.relation.urihttps://doi.org/10.1016/j.cej.2024.157563
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationOxigen
dc.subject.classificationAigua oxigenada
dc.subject.classificationElectroquímica
dc.subject.otherOxygen
dc.subject.otherHydrogen peroxide
dc.subject.otherElectrochemistry
dc.titleRational design of an air-breathing gas-diffusion electrode with oxygen vacancy-rich ZnO for robust and durable H<sub>2</sub>O<sub>2</sub> electrosynthesis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
870451.pdf
Mida:
612.94 KB
Format:
Adobe Portable Document Format