Rational design of an air-breathing gas-diffusion electrode with oxygen vacancy-rich ZnO for robust and durable H<sub>2</sub>O<sub>2</sub> electrosynthesis
| dc.contributor.author | Sun, Y. | |
| dc.contributor.author | Xia, P. | |
| dc.contributor.author | Sheng, P. | |
| dc.contributor.author | Wang, Chao | |
| dc.contributor.author | You, J. | |
| dc.contributor.author | Deng, Q. | |
| dc.contributor.author | He, Quiang | |
| dc.contributor.author | Sirés Sadornil, Ignacio | |
| dc.contributor.author | Ye, Z. | |
| dc.date.accessioned | 2024-11-20T00:13:37Z | |
| dc.date.embargoEndDate | info:eu-repo/date/embargoEnd/2026-11-07 | |
| dc.date.issued | 2024-11-08 | |
| dc.date.updated | 2024-11-20T00:13:37Z | |
| dc.description.abstract | Developing cost-effective and durable cathodes with outstanding oxygen mass transport and selective two-electron oxygen reduction reaction (ORR) is crucial for large-scale H2O2 electrosynthesis. Herein, an oxygen vacancy-rich ZnO-modified air-breathing gas-diffusion electrode (ZnO-V/GDE) was fabricated, thus eliminating the cost of aeration while achieving remarkable O2 utilization efficiency and H2O2 selectivity. This novel cathode led to ultrahigh H2O2 yield of 1005.2 mg L−1 with selectivity of 74.6 %, outperforming both the raw and ZnO-modified air-breathing GDEs. Moreover, the practical applicability of ZnO-V/GDE was demonstrated by its high stability and effectiveness when treating micropollutants in wastewater by ZnO-V/GDE-based electro-Fenton process. Mechanistic insights unveiled the key roles of oxygen vacancies, which not only facilitate the O2 transport by creating a superhydrophobic interface and provide binding centers to O2, but also reduce the energy barrier of the rate-determining step (OOH*-to-H2O2), eventually enhancing the ORR performance. | |
| dc.embargo.lift | 2026-11-07 | |
| dc.format.extent | 1 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 751805 | |
| dc.identifier.issn | 1385-8947 | |
| dc.identifier.uri | https://hdl.handle.net/2445/216632 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier B.V. | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.cej.2024.157563 | |
| dc.relation.ispartof | Chemical Engineering Journal, 2024, vol. 500, p. 157563 | |
| dc.relation.uri | https://doi.org/10.1016/j.cej.2024.157563 | |
| dc.rights | cc-by-nc-nd (c) Elsevier B.V., 2024 | |
| dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | Articles publicats en revistes (Ciència dels Materials i Química Física) | |
| dc.subject.classification | Oxigen | |
| dc.subject.classification | Aigua oxigenada | |
| dc.subject.classification | Electroquímica | |
| dc.subject.other | Oxygen | |
| dc.subject.other | Hydrogen peroxide | |
| dc.subject.other | Electrochemistry | |
| dc.title | Rational design of an air-breathing gas-diffusion electrode with oxygen vacancy-rich ZnO for robust and durable H<sub>2</sub>O<sub>2</sub> electrosynthesis | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1