Kinematic reduction of reaction-diffusion fronts with multiplicative noise. Derivation of stochastic sharp-interface equations

dc.contributor.authorRocco, Andreacat
dc.contributor.authorRamírez Piscina, Laureanocat
dc.contributor.authorCasademunt i Viader, Jaumecat
dc.date.accessioned2011-07-07T12:50:58Z
dc.date.available2011-07-07T12:50:58Z
dc.date.issued2002
dc.description.abstractWe study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.eng
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec196945
dc.identifier.issn1539-3755
dc.identifier.urihttps://hdl.handle.net/2445/18705
dc.language.isoengeng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.65.056116cat
dc.relation.ispartofPhysical Review E, 2002, vol. 65, núm. 5, p. 056116
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevE.65.056116
dc.rights(c) The American Physical Society, 2002eng
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationFísica estadísticacat
dc.subject.classificationTermodinàmicacat
dc.subject.classificationSistemes dinàmics diferenciablescat
dc.subject.classificationDinàmica de fluidscat
dc.subject.otherStatistical physicseng
dc.subject.otherThermodynamicseng
dc.subject.otherDifferentiable dynamical systemseng
dc.subject.otherFluid dynamicseng
dc.titleKinematic reduction of reaction-diffusion fronts with multiplicative noise. Derivation of stochastic sharp-interface equationseng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
196945.pdf
Mida:
176.53 KB
Format:
Adobe Portable Document Format