El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Tesi

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Bravo Prieto, Carlos, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/189500

Variational quantum architectures. Applications for noisy intermediate-scale quantum computers

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[eng] Quantum algorithms showing promising speedups with respect to their classical counterparts already exist. However, noise limits the quantum circuit depth, making the practical implementation of many such quantum algorithms impossible nowadays. In this sense, variational quantum algorithms offer a new approach, reducing the requisites of quantum computational resources at the expense of classical optimization. Disciplines in which variational quantum algorithms may have practical applications include simulation of quantum systems, solving large systems of linear equations, combinatorial optimization, data compression, quantum state diagonalization, among others. This thesis studies different variational quantum algorithm applications. In Chapter 1, we introduce the main building blocks of variational quantum algorithms. In Chapter 2, we benchmark the seminal variational quantum eigensolver algorithm for condensed matter systems. In Chapter 3, we explore how the task of compressing quantum information is affected by data encoding in variational quantum circuits. In Chapter 4, we propose a novel variational quantum algorithm to compute the singular values of pure bipartite states. In Chapter 5, we develop a new variational quantum algorithm to solve linear systems of equations. Finally, in Chapter 6, we implement quantum generative adversarial networks for generative modeling tasks. The conclusions of this thesis are exposed in Chapter 7. Furthermore, supplementary material can be found in the appendices. Appendix A provides an introduction to Qibo, a framework for quantum simulation. Appendix B presents some results related to the Solovay-Kitaev theorem. Extra results from Chapter 5 and Chapter 6 can be found in Appendix C and Appendix D, respectively.
[spa] Algoritmos cuánticos mostrando prometedoras ventajas respecto sus contrapartes clásicas ya existen. Sin embargo, el ruido limita la profundidad de los circuitos cuánticos, lo que hace imposible la aplicación práctica de muchos de estos algoritmos cuánticos en la actualidad. En este sentido, los algoritmos cuánticos variacionales ofrecen un nuevo enfoque, reduciendo los requisitos de recursos computacionales cuánticos a expensas de optimización clásica. Disciplinas en las que los algoritmos cuánticos variacionales pueden tener aplicaciones prácticas incluyen la simulación de sistemas cuánticos, la resolución de grandes sistemas de ecuaciones lineales, la optimización combinatoria, la compresión de datos y la diagonalización de estados cuánticos, entre otras. Esta tesis estudia diferentes aplicaciones de los algoritmos cuánticos variacionales. En el Capítulo 1, presentamos los principales bloques de construcción de los algoritmos cuánticos variacionales. En el Capítulo 2, evaluamos el algoritmo “variational quantum eigensolver” para sistemas de materia condensada. En el capítulo 3, exploramos cómo la tarea de comprimir la información cuántica se ve afectada por la codificación de datos en los circuitos cuánticos variacionales. En el Capítulo 4, proponemos un novedoso algoritmo cuántico variacional para calcular los valores singulares de los estados bipartitos puros. En el Capítulo 5, desarrollamos un nuevo algoritmo cuántico variacional para resolver sistemas lineales de ecuaciones. Finalmente, en el Capítulo 6, implementamos redes generativas adversarias cuánticas para tareas de modelado generativo. Las conclusiones de esta tesis se exponen en el Capítulo 7. Además, se puede encontrar material complementario en los apéndices. El Apéndice A ofrece una introducción a Qibo, un software para la simulación cuántica. El Apéndice B presenta algunos resultados relacionados con el teorema de Solovay-Kitaev. En el Apéndice C y en el Apéndice D se pueden encontrar resultados adicionales del Capítulo 5 y del Capítulo 6, respectivamente.

Citació

Citació

BRAVO PRIETO, Carlos. Variational quantum architectures. Applications for noisy intermediate-scale quantum computers. [consulta: 3 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/189500]

Exportar metadades

JSON - METS

Compartir registre