Khinchin Theorem and Anomalous Diffusion
| dc.contributor.author | Lapas, Luciano Calheiros | |
| dc.contributor.author | Morgado, Rafael | |
| dc.contributor.author | Vainstein, Mendeli H. | |
| dc.contributor.author | Rubí Capaceti, José Miguel | |
| dc.contributor.author | Oliveira, Fernando A. | |
| dc.date.accessioned | 2019-05-30T14:10:42Z | |
| dc.date.available | 2019-05-30T14:10:42Z | |
| dc.date.issued | 2008-12-04 | |
| dc.date.updated | 2019-05-30T14:10:43Z | |
| dc.description.abstract | A recent Letter [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949)] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a generalized Langevin equation the Khinchin theorem holds. | |
| dc.format.extent | 4 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 604748 | |
| dc.identifier.issn | 0031-9007 | |
| dc.identifier.uri | https://hdl.handle.net/2445/134217 | |
| dc.language.iso | eng | |
| dc.publisher | American Physical Society | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1103/PhysRevLett.101.230602 | |
| dc.relation.ispartof | Physical Review Letters, 2008, vol. 101, num. 23, p. 230602 | |
| dc.relation.uri | https://doi.org/10.1103/PhysRevLett.101.230602 | |
| dc.rights | (c) American Physical Society, 2008 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Física de la Matèria Condensada) | |
| dc.subject.classification | Teoria ergòdica | |
| dc.subject.classification | Difusió | |
| dc.subject.other | Ergodic theory | |
| dc.subject.other | Diffusion | |
| dc.title | Khinchin Theorem and Anomalous Diffusion | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1