Chemical source localization fusing concentration information in the presence of chemical background noise

dc.contributor.authorPomareda Sesé, Victor
dc.contributor.authorMagrans, Rudys
dc.contributor.authorJiménez-Soto, Juan M.
dc.contributor.authorMartínez, Dani
dc.contributor.authorTresanchez, Marcel
dc.contributor.authorBurgués, Javier
dc.contributor.authorPalacín Roca, Jordi
dc.contributor.authorMarco Colás, Santiago
dc.date.accessioned2017-04-24T12:03:37Z
dc.date.available2017-04-24T12:03:37Z
dc.date.issued2017-04-20
dc.date.updated2017-04-24T12:03:38Z
dc.description.abstractWe present the estimation of a likelihood map for the location of the source of a chemical plume dispersed under atmospheric turbulence under uniform wind conditions. The main contribution of this work is to extend previous proposals based on Bayesian inference with binary detections to the use of concentration information while at the same time being robust against the presence of background chemical noise. For that, the algorithm builds a background model with robust statistics measurements to assess the posterior probability that a given chemical concentration reading comes from the background or from a source emitting at a distance with a specific release rate. In addition, our algorithm allows multiple mobile gas sensors to be used. Ten realistic simulations and ten real data experiments are used for evaluation purposes. For the simulations, we have supposed that sensors are mounted on cars which do not have among its main tasks navigating toward the source. To collect the real dataset, a special arena with induced wind is built, and an autonomous vehicle equipped with several sensors, including a photo ionization detector (PID) for sensing chemical concentration, is used. Simulation results show that our algorithm, provides a better estimation of the source location even for a low background level that benefits the performance of binary version. The improvement is clear for the synthetic data while for real data the estimation is only slightly better, probably because our exploration arena is not able to provide uniform wind conditions. Finally, an estimation of the computational cost of the algorithmic proposal is presented
dc.format.extent24 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec671056
dc.identifier.issn1424-8220
dc.identifier.pmid28425926
dc.identifier.urihttps://hdl.handle.net/2445/110001
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/s17040904
dc.relation.ispartofSensors, 2017, vol. 17, num. 4, p. 904-927
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/217925/EU//LOTUS
dc.relation.urihttps://doi.org/10.3390/s17040904
dc.rightscc-by (c) Pomareda Sesé, Victor et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationDetectors de gasos
dc.subject.classificationRobòtica
dc.subject.classificationOlfacte
dc.subject.classificationEstadística bayesiana
dc.subject.otherGas detectors
dc.subject.otherRobotics
dc.subject.otherSmell
dc.subject.otherBayesian statistical decision
dc.titleChemical source localization fusing concentration information in the presence of chemical background noise
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
671056.pdf
Mida:
3.13 MB
Format:
Adobe Portable Document Format