El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Interactive Proofs in Bounded Arithmetics

dc.contributor.advisorAtserias, Albert
dc.contributor.authorSoto, Martín
dc.date.accessioned2024-09-25T14:56:14Z
dc.date.available2024-09-25T14:56:14Z
dc.date.issued2024-08
dc.descriptionTreballs Finals del Màster de Lògica Pura i Aplicada, Facultat de Filosofia, Universitat de Barcelona. Curs: 2023-2024. Tutor: Albert Atseriasca
dc.description.abstractPrevious work [3] has shown that V02, the theory of bounded arithmetic in Buss’ Language equipped with comprehension for boundedly definable sets, is consistent with the conjecture NEXP ⊈ P/poly. That work entertains two diferent formalizations of the inclusion NEXP ⊆ P/poly inside V02, termed α and β. Both formalizations are provably equivalent in the standard model of arithmetic, by invoking the Easy Witness Lemma (EWL), a technically deep modern result in complexity theory. While the implication β → α is provable in V02, it is open whether V02 proves the converse implication α → β. Since this converse implication can be interpreted as a formalization of the EWL, whether V02 proves the equivalence of the two formalizations amounts to whether V02 proves (this formalizationof) the EWL. In the present work, we make progress towards resolving this question in the positive. More concretely, we show that V02+α does prove a suitable formalization of IP = PSPACE, which is a central ingredient in the proof of the EWL. In the process of doing so, we lay the foundations necessary to discuss exact counting of large sets and formalization of interactive proofs in V02 and other second-order bounded arithmetics.ca
dc.format.extent63 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/215386
dc.language.isoengca
dc.rightscc by-nc-nd (c) Soto, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Pure and Applied Logic / Lògica Pura i aplicada
dc.subject.classificationLògica
dc.subject.classificationAritmètica
dc.subject.classificationSistemes complexos
dc.subject.classificationTreballs de fi de màster
dc.subject.otherLogic
dc.subject.otherArithmetic
dc.subject.otherComplex systems
dc.subject.otherMaster's thesis
dc.titleInteractive Proofs in Bounded Arithmeticsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFM_Soto_Martin.pdf
Mida:
499.81 KB
Format:
Adobe Portable Document Format
Descripció: