Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Kolk, Jasper van der et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/198264

A geometry-induced topological phase transition in random graphs

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Clustering - the tendency for neighbors of nodes to be connected - quantifies the coupling of a complex network to its latent metric space. In random geometric graphs, clustering undergoes a continuous phase transition, separating a phase with finite clustering from a regime where clustering vanishes in the thermodynamic limit. We prove this geometric-to-nongeometric phase transition to be topological in nature, with anomalous features such as diverging entropy as well as atypical finite size scaling behavior of clustering. Moreover, a slow decay of clustering in the nongeometric phase implies that some real networks with relatively high levels of clustering may be better described in this regime.

Citació

Citació

KOLK, Jasper eibertus van der, SERRANO MORAL, Ma. ángeles (maría ángeles), BOGUÑÁ, Marián. A geometry-induced topological phase transition in random graphs. _Communications Physics_. 2022. Vol. 5, núm. 245. [consulta: 23 de gener de 2026]. ISSN: 2399-3650. [Disponible a: https://hdl.handle.net/2445/198264]

Exportar metadades

JSON - METS

Compartir registre