Dispersion analysis in wave propagation using parametrized mimetic finite differences

dc.contributor.advisorQueralt i Capdevila, Pilar
dc.contributor.authorFerrer Àvila, Miguel
dc.date.accessioned2017-11-03T14:07:41Z
dc.date.available2017-11-03T14:07:41Z
dc.date.issued2017-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2017, Tutora : Pilar Queralt Capdevilaca
dc.description.abstractWave propagation simulations using numerical methods are subject to dispersion errors due to the discrete nature of the differentiation operator. To minimize the effects of dispersion, high-order operators are preferred to solve the wave propagation model. The mimetic finite-difference method is a family of fourth-order finite-difference operators which can be constructed by varying a set of six free parameters. In this work, I explore the effect of varying these parameters on the dispersion of elastic waves, in search of the optimal set of values to minimize this anomaly in a one-dimensional problem.ca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/117383
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Ferrer, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationPropagació d'onescat
dc.subject.classificationDispersió (Física nuclear)cat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherWave propagationeng
dc.subject.otherScattering (Nuclear physics)eng
dc.subject.otherBachelor's theseseng
dc.titleDispersion analysis in wave propagation using parametrized mimetic finite differenceseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Ferrer Ávila Miguel.pdf
Mida:
406.38 KB
Format:
Adobe Portable Document Format