Machine and deep learning for longitudinal biomedical data: a review of methods and applications

dc.contributor.authorCascarano, Anna
dc.contributor.authorMur Petit, Jordi
dc.contributor.authorHernández-González, Jerónimo
dc.contributor.authorCamacho, Marina
dc.contributor.authorToro Eadie, Nina de
dc.contributor.authorGkontra, Polyxeni
dc.contributor.authorChadeau-Hyam, Marc
dc.contributor.authorVitrià i Marca, Jordi
dc.contributor.authorLekadir, Karim, 1977-
dc.date.accessioned2025-04-28T08:02:27Z
dc.date.available2025-04-28T08:02:27Z
dc.date.issued2023-11
dc.date.updated2025-04-28T08:02:27Z
dc.description.abstractExploiting existing longitudinal data cohorts can bring enormous benefits to the medical field, as many diseases have a complex and multi-factorial time-course, and start to develop long before symptoms appear. With the increasing healthcare digitisation, the application of machine learning techniques for longitudinal biomedical data may enable the development of new tools for assisting clinicians in their day-to-day medical practice, such as for early diagnosis, risk prediction, treatment planning and prognosis estimation. However, due to the heterogeneity and complexity of time-varying data sets, the development of suitable machine learning models introduces major challenges for data scientists as well as for clinical researchers. This paper provides a comprehensive and critical review of recent developments and applications in machine learning for longitudinal biomedical data. Although the paper provides a discussion of clustering methods, its primary focus is on the prediction of static outcomes, defined as the value of the event of interest at a given instant in time, using longitudinal features, which has emerged as the most commonly employed approach in healthcare applications. First, the main approaches and algorithms for building longitudinal machine learning models are presented in detail, including their technical implementations, strengths and limitations. Subsequently, most recent biomedical and clinical applications are reviewed and discussed, showing promising results in a wide range of medical specialties. Lastly, we discuss current challenges and consider future directions in the field to enhance the development of machine learning tools from longitudinal biomedical data.
dc.format.extent61 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec738930
dc.identifier.issn0269-2821
dc.identifier.urihttps://hdl.handle.net/2445/220657
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s10462-023-10561-w
dc.relation.ispartofArtificial Intelligence Review, 2023, vol. 56, p. 1711-1771
dc.relation.urihttps://doi.org/10.1007/s10462-023-10561-w
dc.rightscc by (c) Anna Cascarano et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationDades massives
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationCiències de la salut
dc.subject.otherBig data
dc.subject.otherMachine learning
dc.subject.otherMedical sciences
dc.titleMachine and deep learning for longitudinal biomedical data: a review of methods and applications
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
827376.pdf
Mida:
2.64 MB
Format:
Adobe Portable Document Format

Paquet de llicències

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
license.txt
Mida:
1.71 KB
Format:
Item-specific license agreed upon to submission
Descripció: