Helium mediated deposition: Modeling the He−TiO2(110)-(1×1) interaction potential and application to the collision of a helium droplet from density functional calculations

dc.contributor.authorAguirre, Nestor F.
dc.contributor.authorMateo, David
dc.contributor.authorMitrushchenkov, Alexander O.
dc.contributor.authorPi Pericay, Martí
dc.contributor.authorLara Castells, María Pilar de
dc.date.accessioned2019-02-13T13:58:15Z
dc.date.available2019-02-13T13:58:15Z
dc.date.issued2012-03-29
dc.date.updated2019-02-13T13:58:15Z
dc.description.abstractThis paper is the first of a two-part series dealing with quantum-mechanical (density-functional-based) studies of helium-mediated deposition of catalytic species on the rutile TiO2(110)-(1×1) surface. The interaction of helium with the TiO2(110)-(1×1) surface is first evaluated using the Perdew-Burke-Ernzerhof functional at a numerical grid dense enough to build an analytical three-dimensional potential energy surface. Three (two prototype) potential models for the He-surface interaction in helium scattering calculations are analyzed to build the analytical potential energy surface: (1) the hard-corrugated-wall potential model; (2) the corrugated-Morse potential model; and (3) the three-dimensional Morse potential model. Different model potentials are then used to study the dynamics upon collision of a 4He300 cluster with the TiO2(110) surface at zero temperature within the framework of a time-dependent density-functional approach for the quantum fluid [D. Mateo, D. Jin, M. Barranco, and M. Pi, J. Chem. Phys. 134, 044507 (2011)] and classical dynamics calculations. The laterally averaged density functional theory-based potential with an added long-range dispersion interaction term is further applied. At variance with classical dynamics calculations, showing helium droplet splashing out of the surface at impact, the time evolution of the macroscopic helium wave-function predicts that the helium droplet spreads on the rutile surface and leads to the formation of a thin film above the substrate. This work thus provides a basis for simulating helium mediated deposition of metallic clusters embedded within helium nanodroplets.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec613534
dc.identifier.issn0021-9606
dc.identifier.urihttps://hdl.handle.net/2445/128214
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/1.3698173
dc.relation.ispartofJournal of Chemical Physics, 2012, vol. 136, p. 124703
dc.relation.urihttps://doi.org/10.1063/1.3698173
dc.rights(c) American Institute of Physics , 2012
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationÒxids metàl·lics
dc.subject.classificationPel·lícules fines
dc.subject.classificationSuperfícies (Física)
dc.subject.classificationMecànica de fluids
dc.subject.classificationHeli
dc.subject.otherMetallic oxides
dc.subject.otherThin films
dc.subject.otherSurfaces (Physics)
dc.subject.otherFluid mechanics
dc.subject.otherHelium
dc.titleHelium mediated deposition: Modeling the He−TiO2(110)-(1×1) interaction potential and application to the collision of a helium droplet from density functional calculations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
613534.pdf
Mida:
2.17 MB
Format:
Adobe Portable Document Format