On the strong convergence of multiple ordinary integrals to multiple Stratonovich integrals

dc.contributor.authorBardina i Simorra, Xavier
dc.contributor.authorRovira Escofet, Carles
dc.date.accessioned2022-11-07T11:41:41Z
dc.date.available2022-11-07T11:41:41Z
dc.date.issued2021
dc.date.updated2022-11-07T11:41:41Z
dc.description.abstractGiven $\left\{W^{(m)}(t), t \in[0, T]\right\}_{m \geq 1}$, a sequence of approximations to a standard Brownian motion $W$ in $[0, T]$ such that $W^{(m)}(t)$ converges almost surely to $W(t)$, we show that, under regular conditions on the approximations, the multiple ordinary integrals with respect to $d W^{(m)}$ converge to the multiple Stratonovich integral. We are integrating functions of the type $$ f\left(t_1, \ldots, t_n\right)=f_1\left(t_1\right) \cdots f_n\left(t_n\right) I_{\left\{t_1 \leq \cdots \leq t_n\right\}}, $$ where for each $i \in\{1, \ldots, n\}, f_i$ has continuous derivatives in $[0, T]$. We apply this result to approximations obtained from uniform transport processes.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec708072
dc.identifier.issn0214-1493
dc.identifier.urihttps://hdl.handle.net/2445/190527
dc.language.isoeng
dc.publisherUniversitat Autònoma de Barcelona
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.5565/PUBLMAT6522114
dc.relation.ispartofPublicacions Matemàtiques, 2021, vol. 65, num. 2, p. 859-876
dc.relation.urihttps://doi.org/10.5565/PUBLMAT6522114
dc.rights(c) Universitat Autònoma de Barcelona, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationProcessos gaussians
dc.subject.classificationTeoremes de límit (Teoria de probabilitats)
dc.subject.classificationIntegrals estocàstiques
dc.subject.otherGaussian processes
dc.subject.otherLimit theorems (Probability theory)
dc.subject.otherStochastic integrals
dc.titleOn the strong convergence of multiple ordinary integrals to multiple Stratonovich integrals
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
708072.pdf
Mida:
338.22 KB
Format:
Adobe Portable Document Format