Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment

dc.contributor.authorSachot, Nadège
dc.contributor.authorRoguska, Agata
dc.contributor.authorPlanell, J. A. (Josep Anton)
dc.contributor.authorLewandowska, Malgorzata
dc.contributor.authorEngel, Elisabeth
dc.contributor.authorCastaño Linares, Óscar
dc.date.accessioned2017-12-15T14:45:49Z
dc.date.available2017-12-15T14:45:49Z
dc.date.issued2017-07-11
dc.date.updated2017-12-15T14:45:49Z
dc.description.abstractThe success of scaffold implantation in acellular tissue engineering approaches relies on the ability of the material to interact properly with the biological environment. This behavior mainly depends on the design of the graft surface and, more precisely, on its capacity to biodegrade in a well-defined manner (nature of ions released, surface-to-volume ratio, dissolution profile of this release, rate of material resorption, and preservation of mechanical properties). The assessment of the biological behavior of temporary templates is therefore very important in tissue engineering, especially for composites, which usually exhibit complicated degradation behavior. Here, blended polylactic acid (PLA) calcium phosphate ORMOGLASS (organically modified glass) nanofibrous mats have been incubated up to 4 weeks in physiological simulated conditions, and their morphological, topographical, and chemical changes have been investigated. The results showed that a significant loss of inorganic phase occurred at the beginning of the immersion and the ORMOGLASS maintained a stable composition afterward throughout the degradation period. As a whole, the nanostructured scaffolds underwent fast and heterogeneous degradation. This study reveals that an angiogenic calcium-rich environment can be achieved through fast-degrading ORMOGLASS/PLA blended fibers, which seems to be an excellent alternative for guided bone regeneration.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec674776
dc.identifier.issn1176-9114
dc.identifier.pmid28744124
dc.identifier.urihttps://hdl.handle.net/2445/118749
dc.language.isoeng
dc.publisherDove Medical Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.2147/IJN.S135806
dc.relation.ispartofInternational Journal of Nanomedicine, 2017, vol. 12, p. 4901-4919
dc.relation.urihttps://doi.org/10.2147/IJN.S135806
dc.rightscc-by-nc (c) Sachot, N. et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationEnginyeria de teixits
dc.subject.classificationAngiogènesi
dc.subject.classificationNanoestructures
dc.subject.classificationBiodegradació
dc.subject.otherTissue engineering
dc.subject.otherNeovascularization
dc.subject.otherNanostructures
dc.subject.otherBiodegradation
dc.titleFast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
674776.pdf
Mida:
3.24 MB
Format:
Adobe Portable Document Format