Localized self-heating in large arrays of 1D nanostructures

dc.contributor.authorMonereo Cuscó, Oriol
dc.contributor.authorIllera Robles, Sergio
dc.contributor.authorVarea Espelt, Aïda
dc.contributor.authorSchmidt, M.
dc.contributor.authorSauerwald, T.
dc.contributor.authorSchütze, A.
dc.contributor.authorCirera Hernández, Albert
dc.contributor.authorPrades García, Juan Daniel
dc.date.accessioned2016-04-15T12:10:46Z
dc.date.available2017-02-02T23:01:25Z
dc.date.issued2016-02-02
dc.date.updated2016-04-15T12:10:51Z
dc.description.abstractOne dimensional (1D) nanostructures offer a promising path towards highly efficient heating and temperature control in integrated microsystems. The so called self-heating effect can be used to modulate the response of solid state gas sensor devices. In this work, efficient self-heating was found to occur at random networks of nanostructured systems with similar power requirements to highly ordered systems (e.g. individual nanowires, where their thermal efficiency was attributed to the small dimensions of the objects). Infrared thermography and Raman spectroscopy were used to map the temperature profiles of films based on random arrangements of carbon nanofibers during self-heating. Both the techniques demonstrate consistently that heating concentrates in small regions, the here-called 'hot-spots'. On correlating dynamic temperature mapping with electrical measurements, we also observed that these minute hot-spots rule the resistance values observed macroscopically. A physical model of a random network of 1D resistors helped us to explain this observation. The model shows that, for a given random arrangement of 1D nanowires, current spreading through the network ends up defining a set of spots that dominate both the electrical resistance and power dissipation. Such highly localized heating explains the high power savings observed in larger nanostructured systems. This understanding opens a path to design highly efficient self-heating systems, based on random or pseudo-random distributions of 1D nanostructures.
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec659361
dc.identifier.issn2040-3364
dc.identifier.pmid26868599
dc.identifier.urihttps://hdl.handle.net/2445/97491
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1039/c5nr07158e
dc.relation.ispartofNanoscale, 2016, vol. 8, p. 5082-5088
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/336917/EU//BETTERSENSE
dc.relation.uriinfo:eu-repo/semantics/altIdentifier/doi/10.1039/c5nr07158e
dc.relation.urihttp://dx.doi.org/10.1039/c5nr07158e
dc.rights(c) Monereo, O. et al., 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationNanoestructures
dc.subject.otherNanostructures
dc.titleLocalized self-heating in large arrays of 1D nanostructures
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
659361.pdf
Mida:
826.23 KB
Format:
Adobe Portable Document Format