Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Morales, 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223132

Nuclear mass predictions based on convolutional neural networks

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

The precise determination of nuclear masses is essential for understanding atomic nuclei and for applications in astrophysics and nuclear energy. Traditional models like the liquid drop model, with a root mean squared error of σ = 3.94 MeV, fail to meet the accuracy of 100 keV required for nuclear astrophysics research. This work introduces a novel approach by implementing a convolutional neural network (CNN) and leveraging the spatial structure of the nuclide chart. Two models, I3 and I4, are trained and tested on the AME2016 database, achieving values of σ = 0.67 MeV and σ = 0.49 MeV, respectively. Extrapolating to the new nuclei of the AME2020 database, they hold values of σ = 0.64 MeV and σ = 0.57 MeV, demonstrating strong generalization capabilities and proving that CNNs constitute a powerful tool for accurate nuclear mass predictions

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Arnau Rios Huguet

Citació

Citació

MORALES DE LEÓN, David. Nuclear mass predictions based on convolutional neural networks. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/223132]

Exportar metadades

JSON - METS

Compartir registre