ThicknessTool: automated ImageJ retinal layer thickness and profile in digital images

dc.contributor.authorMaidana, Daniel E.
dc.contributor.authorNotomi, Shoji
dc.contributor.authorUeta, Takashi
dc.contributor.authorZhou, Tianna
dc.contributor.authorJoseph, Danica
dc.contributor.authorKosmidou, Cassandra
dc.contributor.authorCaminal Mitjana, Josep Maria
dc.contributor.authorMiller, Joan W.
dc.contributor.authorVavvas, Demetrios G.
dc.date.accessioned2021-05-04T21:09:14Z
dc.date.available2021-05-04T21:09:14Z
dc.date.issued2020-10-28
dc.date.updated2021-05-04T21:09:14Z
dc.description.abstractTo develop an automated retina layer thickness measurement tool for the ImageJ platform, to quantitate nuclear layers following the retina contour. We developed the ThicknessTool (TT), an automated thickness measurement plugin for the ImageJ platform. To calibrate TT, we created a calibration dataset of mock binary skeletonized mask images with increasing thickness masks and different rotations. Following, we created a training dataset and performed an agreement analysis of thickness measurements between TT and two masked manual observers. Finally, we tested the performance of TT measurements in a validation dataset of retinal detachment images. In the calibration dataset, there were no differences in layer thickness between measured and known thickness masks, with an overall coefficient of variation of 0.00%. Training dataset measurements of immunofluorescence retina nuclear layers disclosed no significant differences between TT and any observer's average outer nuclear layer (ONL) (p = 0.998), inner nuclear layer (INL) (p = 0.807), and ONL/INL ratio (p = 0.944) measurements. Agreement analysis showed that bias between TT vs. observers' mean was lower than between any observers' mean against each other in the ONL (0.77 ± 0.34 µm vs 3.25 ± 0.33 µm) and INL (1.59 ± 0.28 µm vs 2.82 ± 0.36 µm). Validation dataset showed that TT can detect significant and true ONL thinning (p = 0.006), more sensitive than manual measurement capabilities (p = 0.069). ThicknessTool can measure retina nuclear layers thickness in a fast, accurate, and precise manner with multi-platform capabilities. In addition, the TT can be customized to user preferences and is freely available to download.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec710132
dc.identifier.issn2045-2322
dc.identifier.pmid33116161
dc.identifier.urihttps://hdl.handle.net/2445/177009
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-020-75501-y
dc.relation.ispartofScientific Reports, 2020, vol. 10, num. 1, p. 18459
dc.relation.urihttps://doi.org/10.1038/s41598-020-75501-y
dc.rightscc-by (c) Maidana, Daniel E. et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Ciències Clíniques)
dc.subject.classificationRetina
dc.subject.classificationImatges mèdiques
dc.subject.otherRetina
dc.subject.otherImaging systems in medicine
dc.titleThicknessTool: automated ImageJ retinal layer thickness and profile in digital images
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
710132.pdf
Mida:
1.52 MB
Format:
Adobe Portable Document Format