Quantification of pathway crosstalk reveals novel synergistic drug combinations for breast cancer

dc.contributor.authorJaeger, Samira
dc.contributor.authorIgea, Ana
dc.contributor.authorArroyo Sánchez, Rodrigo
dc.contributor.authorAlcalde, Victor
dc.contributor.authorCanovas, Begoña
dc.contributor.authorOrozco López, Modesto
dc.contributor.authorNebreda, Àngel R.
dc.contributor.authorAloy, Patrick, 1972-
dc.date.accessioned2017-01-16T10:31:26Z
dc.date.available2017-01-16T10:31:26Z
dc.date.issued2016-11-22
dc.date.updated2017-01-04T14:13:32Z
dc.description.abstractCombinatorial therapeutic approaches are an imperative to improve cancer treatment, because it is critical to impede compensatory signaling mechanisms that can engender drug resistance to individual targeted drugs. Currently approved drug combinations result largely from empirical clinical experience and cover only a small fraction of a vast therapeutic space. Here we present a computational network biology approach, based on pathway cross-talk inhibition, to discover new synergistic drug combinations for breast cancer treatment. In silico analysis identified 390 novel anticancer drug pairs belonging to 10 drug classes that are likely to diminish pathway cross-talk and display synergistic antitumor effects. Ten novel drug combinations were validated experimentally, and seven of these exhibited synergy in human breast cancer cell lines. In particular, we found that one novel combination, pairing the estrogen response modifier raloxifene with the c-Met/VEGFR2 kinase inhibitor cabozantinib, dramatically potentiated the drugs' individual antitumor effects in a mouse model of breast cancer. When compared with high-throughput combinatorial studies without computational prioritization, our approach offers a significant advance capable of uncovering broad-spectrum utility across many cancer types.
dc.format.extent47 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/105628
dc.language.isoeng
dc.publisherAmerican Association for Cancer Research
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1158/0008-5472.CAN-16-0097
dc.relation.ispartofCancer Research, 2016
dc.relation.urihttp://dx.doi.org/10.1158/0008-5472.CAN-16-0097
dc.rights(c) American Association for Cancer Research, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))
dc.subject.classificationCàncer de mama
dc.subject.classificationResistència als medicaments
dc.subject.otherBreast cancer
dc.subject.otherDrug resistance
dc.titleQuantification of pathway crosstalk reveals novel synergistic drug combinations for breast cancer
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
2927.pdf
Mida:
1.9 MB
Format:
Adobe Portable Document Format