Soil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil

dc.contributor.authorPoblador Ibáñez, Sílvia
dc.contributor.authorLupon Navazo, Anna
dc.contributor.authorSabaté i Jorba, Santi
dc.contributor.authorSabater i Comas, Francesc
dc.date.accessioned2018-06-12T13:32:44Z
dc.date.available2018-06-12T13:32:44Z
dc.date.issued2017-09-21
dc.date.updated2018-06-12T13:32:44Z
dc.description.abstractRiparian zones play a fundamental role in regulating the amount of carbon (C) and nitrogen (N) that is exported from catchments. However, C and N removal via soil gaseous pathways can influence local budgets of greenhouse gas (GHG) emissions and contribute to climate change. Over a year, we quantified soil effluxes of carbon dioxide (CO2) and nitrous oxide (N2O) from a Mediterranean riparian forest in order to understand the role of these ecosystems on catchment GHG emissions. In addition, we evaluated the main soil microbial processes that produce GHG (mineralization, nitrification, and denitrification) and how changes in soil properties can modify the GHG production over time and space. Riparian soils emitted larger amounts of CO2 (1.2-10 g C m−2 d−1) than N2O (0.001-0.2 mg N m−2 d−1) to the atmosphere attributed to high respiration and low denitrification rates. Both CO2 and N2O emissions showed a marked (but antagonistic) spatial gradient as a result of variations in soil water content across the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the hillslope, while N2O emissions were higher in the wet zones adjacent to the stream channel. However, both CO2 and N2O emissions peaked after spring rewetting events, when optimal conditions of soil water content, temperature, and N availability favor microbial respiration, nitrification, and denitrification. Overall, our results highlight the role of water availability on riparian soil biogeochemistry and GHG emissions and suggest that climate change alterations in hydrologic regimes can affect the microbial processes that produce GHG as well as the contribution of these systems to regional and global biogeochemical cycles.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec674953
dc.identifier.issn1726-4170
dc.identifier.urihttps://hdl.handle.net/2445/122909
dc.language.isoeng
dc.publisherEuropean Geosciences Union (EGU)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.5194/bg-14-4195-2017
dc.relation.ispartofBiogeosciences, 2017, num. 14, p. 4195-4208
dc.relation.urihttps://doi.org/10.5194/bg-14-4195-2017
dc.rightscc-by (c) Poblador, Sílvia et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)
dc.subject.classificationRiberes
dc.subject.classificationGasos d'efecte hivernacle
dc.subject.classificationCanvi climàtic
dc.subject.otherShorelines
dc.subject.otherGreenhouse gase
dc.subject.otherClimatic change
dc.titleSoil water content drives spatiotemporal patterns of CO2 and N2O emissions from a Mediterranean riparian forest soil
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
674953.pdf
Mida:
2.54 MB
Format:
Adobe Portable Document Format