Performance of the G(0)W(0) method in predicting the electronic gap of TiO2 nanoparticles

dc.contributor.authorMorales García, Ángel
dc.contributor.authorValero Montero, Rosendo
dc.contributor.authorIllas i Riera, Francesc
dc.date.accessioned2020-06-11T08:18:51Z
dc.date.available2020-06-11T08:18:51Z
dc.date.issued2017-08-01
dc.date.updated2020-06-11T08:18:52Z
dc.description.abstractUsing a relativistic all-electron description and numerical atomic-centered orbital basis set, the performance of the G(0)W(0) method on the electronic band gap of (TiO2) nanoparticles (n = 1-20) is investigated. Results are presented for G(0)W(0) on top of hybrid (PBE0 and a modified version with 12.5% of Fock exchange) functionals. The underestimation of the electronic band gap from Kohn-Sham orbital energies is corrected by the quasiparticle energies from the G(0)W(0) method, which are consistent with the variational Delta SCF approach. A clear correlation between both methods exists regardless of the hybrid functional employed. In addition, the vertical ionization potential and electron affinity from quasiparticle energies show a systematic correlation with the Delta SCF calculated values. On the other hand, the shape of the nanoparticles promotes some deviations on the electronic band gap. In conclusion, this study shows the following: (i) A systematic correlation exists between band gaps, ionization potentials, and electron affinities of TiO2 nanoparticles as predicted from variational Delta SCF and G(0)W(0) methods. (ii) The G(0)W(0) approach can be successfully used to study the electronic band gap of realistic size nanoparticles at an affordable computational cost with a Delta SCF accuracy giving results that are directly related with those from photoemission spectroscopy. (iii) The quasiparticle energies are explicitly required to shed light on the photocatalytic properties of TiO2. (iv) The G(0)W(0) approach emerges as an accurate method to investigate the photocatalytic properties of both nanoparticles and extended semiconductors.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec676447
dc.identifier.issn1549-9618
dc.identifier.urihttps://hdl.handle.net/2445/165143
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jctc.7b00308
dc.relation.ispartofJournal of Chemical Theory and Computation, 2017, vol. 13, num. 8, p. 3746-3753
dc.relation.urihttps://doi.org/10.1021/acs.jctc.7b00308
dc.rights(c) American Chemical Society , 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationNanopartícules
dc.subject.classificationÒxids
dc.subject.classificationEnergia elèctrica
dc.subject.otherNanoparticles
dc.subject.otherOxides
dc.subject.otherElectric power
dc.titlePerformance of the G(0)W(0) method in predicting the electronic gap of TiO2 nanoparticles
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
676447.pdf
Mida:
1.87 MB
Format:
Adobe Portable Document Format