Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/121428

Estimation of logistic regression models in small samples. A simulation study using a weakly informative default prior distribution

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In this paper, we used simulations to compare the performance of classical and Bayesian estimations in logistic regression models using small samples. In the performed simulations, conditions were varied, including the type of relationship between independent and dependent variable values (i.e.,unrelated and related values), the type of variable (i.e., binary and continuous), and different Binomial distribution values and symmetry (i.e., symmetry and positive asymmetry). Iteratively reweighted least squares was used as the estimate method to fit the models in both the classical and Bayesian estimations. A weakly informative default distribution was chosen as the prior distribution for Bayesian estimation. The simulation results demonstrate that Bayesian estimations provide more stable distributions but are notable to solve problems generated by asymmetric distributions based on small samples. Additional research using different kinds of priors that is addressed at solving problems caused by asymmetry is needed.

Citació

Citació

GORDÓVIL MERINO, Amàlia, GUÀRDIA-OLMOS, Joan, PERÓ, Maribel. Estimation of logistic regression models in small samples. A simulation study using a weakly informative default prior distribution. _Psicologica_. 2012. Vol. 33, núm. 2, pàgs. 345-361. [consulta: 21 de gener de 2026]. ISSN: 0211-2159. [Disponible a: https://hdl.handle.net/2445/121428]

Exportar metadades

JSON - METS

Compartir registre