Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/8753
On-line event detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.
Matèries
Matèries (anglès)
Citació
Citació
PERERA LLUNA, Alexandre, PAPAMICHAIL, Niko, BARSAN, Nicolae, WEIMAR, Udo, MARCO COLÁS, Santiago. On-line event detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions. _IEEE Sensors Journal_. 2003. Vol. 2, núm. 22-24, pàgs. 860-865. [consulta: 23 de gener de 2026]. ISSN: 1530-437X. [Disponible a: https://hdl.handle.net/2445/8753]