Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/8753

On-line event detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Leakage detection is an important issue in many chemical sensing applications. Leakage detection hy thresholds suffers from important drawbacks when sensors have serious drifts or they are affected by cross-sensitivities. Here we present an adaptive method based in a Dynamic Principal Component Analysis that models the relationships between the sensors in the may. In normal conditions a certain variance distribution characterizes sensor signals. However, in the presence of a new source of variance the PCA decomposition changes drastically. In order to prevent the influence of sensor drifts the model is adaptive and it is calculated in a recursive manner with minimum computational effort. The behavior of this technique is studied with synthetic signals and with real signals arising by oil vapor leakages in an air compressor. Results clearly demonstrate the efficiency of the proposed method.

Matèries (anglès)

Citació

Citació

PERERA LLUNA, Alexandre, PAPAMICHAIL, Niko, BARSAN, Nicolae, WEIMAR, Udo, MARCO COLÁS, Santiago. On-line event detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions. _IEEE Sensors Journal_. 2003. Vol. 2, núm. 22-24, pàgs. 860-865. [consulta: 23 de gener de 2026]. ISSN: 1530-437X. [Disponible a: https://hdl.handle.net/2445/8753]

Exportar metadades

JSON - METS

Compartir registre