Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hibrid and conventional barley

dc.contributor.authorKefauver, Shawn Carlisle
dc.contributor.authorVicente García, Rubén, 1978-
dc.contributor.authorVergara Díaz, Omar
dc.contributor.authorFernández Gallego, José A.
dc.contributor.authorKerfal, Samir
dc.contributor.authorLopez, Antonio
dc.contributor.authorMelichar, James P. E.
dc.contributor.authorSerret Molins, M. Dolors
dc.contributor.authorAraus Ortega, José Luis
dc.date.accessioned2018-06-08T14:30:32Z
dc.date.available2018-06-08T14:30:32Z
dc.date.issued2017-10-10
dc.date.updated2018-06-08T14:30:33Z
dc.description.abstractWith the commercialization and increasing availability of Unmanned Aerial Vehicles (UAVs) multiple rotor copters have expanded rapidly in plant phenotyping studies with their ability to provide clear, high resolution images. As such, the traditional bottleneck of plant phenotyping has shifted from data collection to data processing. Fortunately, the necessarily controlled and repetitive design of plant phenotyping allows for the development of semi-automatic computer processing tools that may sufficiently reduce the time spent in data extraction. Here we present a comparison of UAV and field based high throughput plant phenotyping (HTPP) using the free, open-source image analysis software FIJI (Fiji is just ImageJ) using RGB (conventional digital cameras), multispectral and thermal aerial imagery in combination with a matching suite of ground sensors in a study of two hybrids and one conventional barely variety with ten different nitrogen treatments, combining different fertilization levels and application schedules. A detailed correlation network for physiological traits and exploration of the data comparing between treatments and varieties provided insights into crop performance under different management scenarios. Multivariate regression models explained 77.8, 71.6, and 82.7% of the variance in yield from aerial, ground, and combined data sets, respectively.
dc.format.extent15 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec674572
dc.identifier.issn1664-462X
dc.identifier.pmid29067032
dc.identifier.urihttps://hdl.handle.net/2445/122870
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fpls.2017.01733
dc.relation.ispartofFrontiers in Plant Science, 2017, vol. 8, num. 1733
dc.relation.urihttps://doi.org/10.3389/fpls.2017.01733
dc.rightscc-by (c) Kefauver, Shawn C. et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)
dc.subject.classificationOrdi
dc.subject.classificationNitrogen
dc.subject.otherBarley
dc.subject.otherNitrogen
dc.titleComparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hibrid and conventional barley
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
674572.pdf
Mida:
2.32 MB
Format:
Adobe Portable Document Format