Properties of Nanocrystalline Silicon Probed by Optomechanics

dc.contributor.authorNavarro Urrios, Daniel
dc.contributor.authorColombano, Martín F.
dc.contributor.authorMaire, Jérémie
dc.contributor.authorChavez Ángel, Emigdio
dc.contributor.authorArregui, Guillermo
dc.contributor.authorCapuj, Néstor E.
dc.contributor.authorDevos, Arnaud
dc.contributor.authorGriol, Amadeu
dc.contributor.authorBellieres, Laurent
dc.contributor.authorMartínez, Alejandro
dc.contributor.authorGrigoras, Kestutis
dc.contributor.authorHäkkinen, Teija
dc.contributor.authorSaarilahti, Jaakko
dc.contributor.authorMakkonen, Tapani
dc.contributor.authorSotomayor Torres, Clivia M.
dc.contributor.authorAhopelto, Jouni
dc.date.accessioned2021-07-28T13:42:15Z
dc.date.available2021-07-28T13:42:15Z
dc.date.issued2020-10-15
dc.date.updated2021-07-28T13:42:15Z
dc.description.abstractNanocrystalline materials exhibit properties that can differ substantially from those of their single crystal counterparts. As such, they provide ways to enhance and optimize their functionality for devices and applications. Here, we report on the optical, mechanical and thermal properties of nanocrystalline silicon probed by means of optomechanical nanobeams to extract information of the dynamics of optical absorption, mechanical losses, heat generation and dissipation. The optomechanical nanobeams are fabricated using nanocrystalline films prepared by annealing amorphous silicon layers at different temperatures. The resulting crystallite sizes and the stress in the films can be controlled by the annealing temperature and time and, consequently, the properties of the films can be tuned relatively freely, as demonstrated here by means of electron microscopy and Raman scattering. We show that the nanocrystallite size and the volume fraction of the grain boundaries play a key role in the dissipation rates through nonlinear optical and thermal processes. Promising optical (13,000) and mechanical (1700) quality factors were found in the optomechanical cavity realized in the nanocrystalline Si resulting from annealing at 950°C. The enhanced absorption and recombination rates via the intragap states and the reduced thermal conductivity boost the potential to exploit these nonlinear effects in applications including Nanoelectromechanical systems (NEMS), phonon lasing and chaos-based devices.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec706585
dc.identifier.issn2192-8606
dc.identifier.urihttps://hdl.handle.net/2445/179458
dc.language.isoeng
dc.publisherDe Gruyter
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1515/nanoph-2020-0489
dc.relation.ispartofNanophotonics, 2020, vol. 9, num. 16, p. 4819-4829
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/713450/EU//PHENOMEN
dc.relation.urihttps://doi.org/10.1515/nanoph-2020-0489
dc.rightscc-by (c) Navarro Urrios, Daniel et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationOnes electromagnètiques
dc.subject.classificationSilici
dc.subject.otherElectromagnetic waves
dc.subject.otherSilicon
dc.titleProperties of Nanocrystalline Silicon Probed by Optomechanics
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
706585.pdf
Mida:
3.28 MB
Format:
Adobe Portable Document Format