Enhancing point cloud semantic segmentation via scalable domain adaptation with LoRA-enabled PointNet++

dc.contributor.authorCarós, Mariona
dc.contributor.authorJust, Ariadna
dc.contributor.authorSeguí Mesquida, Santi
dc.contributor.authorVitrià i Marca, Jordi
dc.date.accessioned2026-02-19T10:03:31Z
dc.date.available2026-02-19T10:03:31Z
dc.date.issued2026-01-01
dc.date.updated2026-02-19T10:03:31Z
dc.description.abstractSemantic segmentation of airborne LiDAR point clouds enables a broad range of urban and environmental applications. However, domain shifts between training and operational data, as well asthefrequentemergenceofnewsemanticclasses,posesignificantchallengesfordeploying deep learning models effectively. In this work, we explore the integration of Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning technique, into the PointNet++ architecture to address these challenges. We evaluate LoRA in two realistic scenarios: domain adaptation and incremental learning with novel classes, using subsets of large-scale LiDAR datasets under constrained labeled data settings. Our experiments show that LoRA outperforms traditional full f ine-tuning, achieving notable gains (+3.1 IoU for specific classes and +0.3 mIoUonTerLiDAR, +2.7 mIoU on DALES), while exhibiting greater resistance to catastrophic forgetting and improved generalization, particularly for underrepresented classes. Furthermore, LoRA exceeds baseline accuracy with substantially fewer trainable parameters (73.4% reduction), highlighting its suitability for resource-constrained deployment scenarios. We also present TerLiDAR, a publicly available annotated airborne LiDAR dataset covering 51.4 km2 along the Ter River in Catalonia, Spain. It contributes to increasing the diversity of semantic segmentation benchmarks and advancing 3D scene understanding in remote sensing.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec765257
dc.identifier.issn0924-2716
dc.identifier.urihttps://hdl.handle.net/2445/227057
dc.language.iso
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.ophoto.2026.100119
dc.relation.ispartofISPRS Journal of Photogrammetry and Remote Sensing, 2026, vol. 19
dc.relation.urihttps://doi.org/10.1016/j.ophoto.2026.100119
dc.rightscc-by-nc-nd (c) Mariona Carós, et al., 2026
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationVisualització tridimensional
dc.subject.classificationVisió per ordinador
dc.subject.classificationTeledetecció
dc.subject.otherThree-dimensional display systems
dc.subject.otherComputer vision
dc.subject.otherRemote sensing
dc.titleEnhancing point cloud semantic segmentation via scalable domain adaptation with LoRA-enabled PointNet++
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
917325.pdf
Mida:
6.63 MB
Format:
Adobe Portable Document Format