Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193627
Invariant manifolds of parabolic fixed points (I). Existence and dependence on parameters.
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Abstract. In this paper we study the existence and regularity of stable manifolds associated to fixed points of parabolic type in the differentiable and analytic cases, using the parametrization method. The parametrization method relies on a suitable approximate solution of a functional equation. In the case of parabolic points, if the manifolds have dimension two or higher, in general this approximation cannot be obtained in the ring of polynomials but as a sum of homogeneous functions and it is given in [BFM]. Assuming a sufficiently good approximation is found, here we provide an "a posteriori" result which gives a true invariant manifold close to the approximated one. In the differentiable case, in some cases, there is a loss of regularity. We also consider the case of parabolic periodic orbits of periodic vector fields and the dependence of the manifolds on parameters. Examples are provided. We apply our method to prove that in several situations, namely, related to the parabolic infinity in the elliptic spatial three body problem, these invariant manifolds exist and do have polynomial approximations.
Matèries (anglès)
Citació
Citació
BALDOMÁ, Inmaculada, FONTICH, Ernest, MARTÍN, Pau. Invariant manifolds of parabolic fixed points (I). Existence and dependence on parameters.. _Journal of Differential Equations_. 2020. Vol. 268, núm. 9, pàgs. 5516-5573. [consulta: 23 de gener de 2026]. ISSN: 0022-0396. [Disponible a: https://hdl.handle.net/2445/193627]