Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Cuevas-Caballé, Cristian et al., 2019
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/137439

Diet assessment of two land planarian species using high-throughput sequencing data

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Geoplanidae (Platyhelminthes: Tricladida) feed on soil invertebrates. Observations of their predatory behavior in nature are scarce, and most of the information has been obtained from food preference experiments. Although these experiments are based on a wide variety of prey, this catalog is often far from being representative of the fauna present in the natural habitat of planarians. As some geoplanid species have recently become invasive, obtaining accurate knowledge about their feeding habits is crucial for the development of plans to control and prevent their expansion. Using high throughput sequencing data, we perform a metagenomic analysis to identify the in situ diet of two endemic and codistributed species of geoplanids from the Brazilian Atlantic Forest: Imbira marcusi and Cephaloflexa bergi. We have tested four different methods of taxonomic assignment and find that phylogenetic-based assignment methods outperform those based on similarity. The results show that the diet of I. marcusi is restricted to earthworms, whereas C. bergi preys on spiders, harvestmen, woodlice, grasshoppers, Hymenoptera, Lepidoptera and possibly other geoplanids. Furthermore, both species change their feeding habits among the different sample locations. In conclusion, the integration of metagenomics with phylogenetics should be considered when establishing studies on the feeding habits of invertebrates.

Matèries (anglès)

Citació

Citació

CUEVAS-CABALLÉ, Cristian, RIUTORT LEÓN, Marta, ÁLVAREZ PRESAS, Marta. Diet assessment of two land planarian species using high-throughput sequencing data. _Scientific Reports_. 2019. Vol. 9, núm. 8679. [consulta: 23 de gener de 2026]. ISSN: 2045-2322. [Disponible a: https://hdl.handle.net/2445/137439]

Exportar metadades

JSON - METS

Compartir registre