ALGEBRAIC EXPANSIONS OF LOGICS

dc.contributor.authorCampercholi, Miguel
dc.contributor.authorCastaño, Diego Nicolás
dc.contributor.authorDíaz Varela, José Patricio
dc.contributor.authorGispert Brasó, Joan
dc.date.accessioned2026-01-12T08:11:13Z
dc.date.available2026-01-12T08:11:13Z
dc.date.issued2023-03-01
dc.date.updated2026-01-12T08:11:13Z
dc.description.abstractAn algebraically expandable (AE) class is a class of algebraic structures axiomatizable by sentences of the form $\forall \exists!\wedge p=q$. For a logic $L$ algebraized by a quasivariety $\mathcal{Q}$ we show that the AEsubclasses of $\mathcal{Q}$ correspond to certain natural expansions of $L$, which we call algebraic expansions. These turn out to be a special case of the expansions by implicit connectives studied by $\mathbf{X}$. Caicedo. We proceed to characterize all the AE-subclasses of abelian $\ell$-groups and perfect MV-algebras, thus fully describing the algebraic expansions of their associated logics.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec724196
dc.identifier.issn0022-4812
dc.identifier.urihttps://hdl.handle.net/2445/225261
dc.language.isoeng
dc.publisherAssociation for Symbolic Logic.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1017/jsl.2022.47
dc.relation.ispartofJournal of Symbolic Logic, 2023, vol. 88, num.1
dc.relation.urihttps://doi.org/10.1017/jsl.2022.47
dc.rights(c) Campercholi, Miguel et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subject.classificationLògica algebraica
dc.subject.classificationEstructures algebraiques ordenades
dc.subject.classificationTeoria dels reticles
dc.subject.otherAlgebraic logic
dc.subject.otherOrdered algebraic structures
dc.subject.otherLattice theory
dc.titleALGEBRAIC EXPANSIONS OF LOGICS
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
251264.pdf
Mida:
371.37 KB
Format:
Adobe Portable Document Format