Multivariate data analysis for the detection of human alpha-acid glycoprotein aberrant glycosylation in pancreatic ductal adenocarcinoma

dc.contributor.authorMancera Arteu, Montserrat
dc.contributor.authorGiménez López, Estela
dc.contributor.authorBalmaña, Meritxell
dc.contributor.authorBarrabés, Silvia
dc.contributor.authorAlbiol-Quer, Maite
dc.contributor.authorFort, Esther
dc.contributor.authorPeracaula, Rosa
dc.contributor.authorSanz Nebot, María Victoria
dc.date.accessioned2022-06-21T07:04:39Z
dc.date.available2022-06-21T07:04:39Z
dc.date.issued2019
dc.date.updated2022-06-21T07:04:39Z
dc.description.abstractRelative quantification of human alpha-acid glycoprotein (hAGP) glycan isomers using [12C6]/[13C6]-aniline in combination with multivariate data analysis is proposed as an efficient method for the identification of pancreatic ductal adenocarcinoma (PDAC) glycan biomarkers in serum samples. Intact and desialylated glycans from hAGP, purified from serum samples of patients with PDAC and chronic pancreatitis (ChrP), were labeled with aniline and analyzed by μZIC-HILIC-MS. Afterwards, partial least squares discriminant analysis (PLS-DA) was applied to the relative areas obtained for all glycan isomers in the different samples: pathological (ChrP or PDAC) versus healthy samples. Seven intact glycan isomers with α2-6 linked sialic acids, five of them also fucosylated, were the most meaningful to distinguish between PDAC and ChrP patients. The desialylated glycan isomers also identified by PLS-DA as potential biomarker candidates confirmed that antenna but also core fucosylation could be involved in PDAC. The analysis of intact and desialylated glycan isomers in combination with the multivariate data analysis revealed that the triantennary glycan with two fucoses of hAGP could have in the future a relevant role in the differentiation of patients with PDAC from those with ChrP.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec681649
dc.identifier.issn1874-3919
dc.identifier.urihttps://hdl.handle.net/2445/186845
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.jprot.2019.01.006
dc.relation.ispartofJournal of Proteomics, 2019, vol. 195, p. 76-87
dc.relation.urihttps://doi.org/10.1016/j.jprot.2019.01.006
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)
dc.subject.classificationGlicoproteïnes
dc.subject.classificationCàncer de pàncrees
dc.subject.classificationMarcadors tumorals
dc.subject.otherGlycoproteins
dc.subject.otherPancreas cancer
dc.subject.otherTumor markers
dc.titleMultivariate data analysis for the detection of human alpha-acid glycoprotein aberrant glycosylation in pancreatic ductal adenocarcinoma
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
681649.pdf
Mida:
12.44 MB
Format:
Adobe Portable Document Format