Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/194824
On the Apéry sets of monomial curves
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
In this paper, we use the Apéry table of the numerical semigroup associated to an affine monomial curve in order to characterize arithmetic properties and invariants of its tangent cone. In particular, we precise the shape of the Apéry table of a numerical semigroup of embedding dimension 3, when the tangent cone of its monomial curve is Buchsbaum or 2-Buchsbaum, and give new proofs for two conjectures raised by Sapko (Commun. Algebra 29:4759-4773, 2001) and Shen (Commun. Algebra 39:1922-1940, 2001). We also provide a new simple proof in the case of monomial curves for Sally's conjecture (Numbers of Generators of Ideals in Local Rings, 1978) that the Hilbert function of a one-dimensional Cohen-Macaulay ring with embedding dimension three is non-decreasing. Finally, we obtain that monomial curves of embedding dimension 4 whose tangent cones are Buchsbaum, and also monomial curves of any embedding dimensions whose numerical semigroups are balanced, have non-decreasing Hilbert functions. Numerous examples are provided to illustrate the results, most of them computed by using the NumericalSgps package of GAP (Delgado et al., NumericalSgps-a GAP package, 2006).
Matèries (anglès)
Citació
Citació
CORTADELLAS BENÍTEZ, Teresa, JAFARI, Raheleh, ZARZUELA, Santiago. On the Apéry sets of monomial curves. _Semigroup Forum_. 2012. Vol. 86, núm. 2, pàgs. 289-320. [consulta: 22 de febrer de 2026]. ISSN: 0037-1912. [Disponible a: https://hdl.handle.net/2445/194824]