Study of work on a quantum harmonic oscillator

dc.contributor.advisorJuliá-Díaz, Bruno
dc.contributor.authorArazo Sánchez, Maria
dc.date.accessioned2017-09-06T13:55:33Z
dc.date.available2017-09-06T13:55:33Z
dc.date.issued2017-01
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2017, Tutor: Bruno Juliá Díazcat
dc.description.abstractWe define the work probability distribution that is done to a quantum system during some process, from which the average work, its variance and the irreversible work can be obtained. Two limits are introduced according to whether the system evolves adiabatically or it undergoes an instantaneous quench. The time evolution of this system is obtained by solving numerically the time dependent Schrödinger equation through the Crank-Nicolson method. The two limit situations are explored for the simple case of a quantum harmonic oscillator with a time dependent Hamiltonian, as well as the intermediate regime between both limits. The results for the average work done during the process and its variance agree with the analytical expressions for the two limits. Finally, we study the work probability distribution during a shortcut to adiabacity protocol.eng
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/115047
dc.language.isoengeng
dc.rightscc-by-nc-nd (c) Arazo, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationTeoria quànticacat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherQuantum theoryeng
dc.subject.otherBachelor's theseseng
dc.titleStudy of work on a quantum harmonic oscillatoreng
dc.typeinfo:eu-repo/semantics/bachelorThesiseng

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFG-Arazo-Sanchez-Maria.pdf
Mida:
408.26 KB
Format:
Adobe Portable Document Format