Bayesian spatio-temporal analysis of the COVID-19 pandemic in Catalonia

dc.contributor.advisorTebé, Cristian
dc.contributor.advisorIgual Muñoz, Laura
dc.contributor.authorSatorra Herbera, Pau
dc.date.accessioned2024-07-08T09:01:10Z
dc.date.available2024-07-08T09:01:10Z
dc.date.issued2023-06-30
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2022-2023. Tutor: Cristian Tebé i Laura Igual Muñozca
dc.description.abstractIn this study, we model the COVID-19 pandemic in the different basic health areas (ABS) in Catalonia, describing the spatial, temporal and spatio-temporal trends of reported COVID-19 cases and hospitalisations. As the ABS are small areas, spatiotemporal small area estimation methods have to be used, which allow us to borrow strength from neighbouring areas and time points. In particular, we use Bayesian hierarchical spatio-temporal models estimated with INLA, providing a very flexible and robust tool that allows the specification of a wide variety of different models, from which the best one is selected according to the model performance. Results are found to be heterogeneous and different hotspots and coldspots are identified both over the whole pandemic period and at different points in time. The analysis of the impact of some characteristics of the ABS shows that urban areas are at higher risk of COVID-19 cases and hospitalisations, while socio-economic deprivation of the area is a risk factor for hospitalisations. In addition, full vaccination coverage of an ABS is shown to have a protective effect on the risk of COVID-19 cases and hospitalisations in specific waves of the pandemic.ca
dc.format.extent65 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/214426
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Pau Satorra Herbera, 2023
dc.rightscodi: GPL (c) Pau Satorra Herbera, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationPandèmia de COVID-19, 2020-
dc.subject.classificationEstadística bayesiana
dc.subject.classificationAnàlisi de sèries temporals
dc.subject.classificationTreballs de fi de màster
dc.subject.otherCOVID-19 Pandemic, 2020-
dc.subject.otherBayesian statistical decision
dc.subject.otherTime-series analysis
dc.subject.otherMaster's thesis
dc.titleBayesian spatio-temporal analysis of the COVID-19 pandemic in Cataloniaca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfm_herbera_satorra_pau.pdf
Mida:
50.18 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
Bayesian-spatio-temporal-analysis-of-COVID-19-in-Catalonia-main.zip
Mida:
27.98 MB
Format:
ZIP file
Descripció:
Codi font