Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) American Mathematical Society (AMS), 2014
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195115

Almost totally complex points on elliptic curves

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Let $F / F_0$ be a quadratic extension of totally real number fields, and let $E$ be an elliptic curve over $F$ which is isogenous to its Galois conjugate over $F_0$. A quadratic extension $M / F$ is said to be almost totally complex (ATC) if all archimedean places of $F$ but one extend to a complex place of $M$. The main goal of this note is to provide a new construction for a supply of Darmon-like points on $E$, which are conjecturally defined over certain ring class fields of $M$. These points are constructed by means of an extension of Darmon's ATR method to higher-dimensional modular abelian varieties, from which they inherit the following features: they are algebraic provided Darmon's conjectures on ATR points hold true, and they are explicitly computable, as we illustrate with a detailed example that provides numerical evidence for the validity of our conjectures.

Citació

Citació

GUITART MORALES, Xavier, ROTGER, Victor, ZHAO, Yu. Almost totally complex points on elliptic curves. _Transactions of the American Mathematical Society_. 2014. Vol. 366, núm. 5, pàgs. 2773-2802. [consulta: 20 de gener de 2026]. ISSN: 0002-9947. [Disponible a: https://hdl.handle.net/2445/195115]

Exportar metadades

JSON - METS

Compartir registre