Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195115
Almost totally complex points on elliptic curves
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Let $F / F_0$ be a quadratic extension of totally real number fields, and let $E$ be an elliptic curve over $F$ which is isogenous to its Galois conjugate over $F_0$. A quadratic extension $M / F$ is said to be almost totally complex (ATC) if all archimedean places of $F$ but one extend to a complex place of $M$. The main goal of this note is to provide a new construction for a supply of Darmon-like points on $E$, which are conjecturally defined over certain ring class fields of $M$. These points are constructed by means of an extension of Darmon's ATR method to higher-dimensional modular abelian varieties, from which they inherit the following features: they are algebraic provided Darmon's conjectures on ATR points hold true, and they are explicitly computable, as we illustrate with a detailed example that provides numerical evidence for the validity of our conjectures.
Matèries (anglès)
Citació
Citació
GUITART MORALES, Xavier, ROTGER, Victor, ZHAO, Yu. Almost totally complex points on elliptic curves. _Transactions of the American Mathematical Society_. 2014. Vol. 366, núm. 5, pàgs. 2773-2802. [consulta: 20 de gener de 2026]. ISSN: 0002-9947. [Disponible a: https://hdl.handle.net/2445/195115]