Copying Machine Learning Classifiers

dc.contributor.authorUnceta, Irene
dc.contributor.authorNin, Jordi
dc.contributor.authorPujol Vila, Oriol
dc.date.accessioned2021-07-07T16:32:04Z
dc.date.available2021-07-07T16:32:04Z
dc.date.issued2020-09-14
dc.date.updated2021-07-07T16:32:05Z
dc.description.abstractWe study copying of machine learning classifiers, an agnostic technique to replicate the decision behavior of any classifier. We develop the theory behind the problem of copying, highlighting its properties, and propose a framework to copy the decision behavior of any classifier using no prior knowledge of its parameters or training data distribution. We validate this framework through extensive experiments using data from a series of well-known problems. To further validate this concept, we use three different use cases where desiderata such as interpretability, fairness or productivization constrains need to be addressed. Results show that copies can be exploited to enhance existing solutions and improve them adding new features and characteristics.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec702957
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/2445/178922
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1109/ACCESS.2020.3020638
dc.relation.ispartofIEEE Access, 2020, vol. 8, p. 160268-160284
dc.relation.urihttps://doi.org/10.1109/ACCESS.2020.3020638
dc.rightscc-by (c) Unceta, Irene et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationModels matemàtics
dc.subject.otherMachine learning
dc.subject.otherMathematical models
dc.titleCopying Machine Learning Classifiers
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
702957.pdf
Mida:
3.43 MB
Format:
Adobe Portable Document Format